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I. On the Laws of the Reflexion and Refraction of Light at the common

Surface of two non-crystallhed Media. By George Green, Esq.,

B.A., Caius College.

[Read December 11, 1837-]

M. Cauchy seems to have been the first who saw fully the

utility of applying to the Theory of Light those formulae which re-

present the motions of a system of molecules acting on each other by

mutually attractive and repulsive forces ; supposing always that in the

mutual action of any two particles, the particles may be regarded as

points animated by forces directed along the right line which joins

them. This last supposition, if applied to those compound particles, at

least, which are separable by mechanical division, seems rather restrict-

ive ; as many phenomena, those of crystallization for instance, seem

to indicate certain polarities in these particles. If, however, this were

not the case, we are so perfectly ignorant of the mode of action of

the elements of the luminiferous ether on each other, that it would

seem a safer method to take some general physical principle as the

basis of our reasoning, rather than assume certain modes of action,

which, after all, may be widely different from the mechanism employed

by nature; more especially if this principle include in itself, as a par-

ticular case, those before used by M. Cauchy and others, and also

lead to a much more simple process of calculation. The principle

selected as the basis of the reasoning contained in the following paper

is this: In whatever way the elements of any material system may
act upon each other, if all the internal forces exerted be multiplied

by the elements of their respective directions, the total sum for any
Vol. VII. Part I. A .



2 Mr GREEN, ON THE REFLEXION

assigned portion of the mass will always be the exact differential of

some function. But, this function being known, we can immediately

apply the general method given in the Mecanique Analytique, and

which appears to be more especially applicable to problems that re-

late to the motions of systems composed of an immense number of

particles mutually acting upon each other. One of the advantages of

this method, of great importance, is, that we are necessarily led by

the mere process of the calculation, and with little care on our part,

to all the equations and conditions which are requisite and sufficient

for the complete solution of any problem to which it may be applied.

The present communication is confined almost entirely to the con-

sideration of non-crystallized media; for which it is proved, that the

function due to the molecular actions, in its most general form, con-

tains only two arbitrary coefficients, A and B
; the values of which

depend of course on the unknown internal constitution of the medium

under consideration, and it would be easy to shew, for the most gene-

ral case, that any arbitrary disturbance, excited in a very small portion

of the medium, would in general, give rise to two spherical waves,

one propagated entirely by normal, the other entirely by transverse,

vibrations, and such that if the velocity of transmission of the former

wave be represented by y/A, that of the latter would be represented

by y/B. But in the transmission of light through a prism, though the

wave which is propagated by normal vibrations were incapable itself of

affecting the eye, yet it would be capable of giving rise to an ordinary

wave of light propagated by transverse vibrations, except in the ex-

A A
treme cases where == = 0, or — = a very large quantity ; which, for

the sake of simplicity, may be regarded as infinite; and it is not diffi-

cult to prove, that the equilibrium of our medium would be unstable

A 4
unless

j5
> -

. We are therefore compelled to adopt the latter value of

-=:, and thus to admit that in the luminiferous ether, the velocity of

transmission of waves propagated by normal vibrations, is very great

compared with that of ordinary light.



AND REFRACTION OF LIGHT. 3

The principal results obtained in this paper, relate to the intensity

of the waves reflected at the common surface of two media, both for

light polarized in and perpendicular to the plane of incidence; and

likewise to the change of phase which takes place when the reflexion

becomes total. In the former case, our values agree precisely with

those given by Fresnel; supposing, as he has done, that the direction

of the actual motion of the particles of the luminiferous ether, is

perpendicular to the plane of polarization. But it results from our

formulae, when the light is polarized perpendicular to the plane of

incidence, that the expressions given by Fresnel are only very near

approximations; and that the intensity of the reflected wave will

never become absolutely null, but only attain a minimum value; which,

in the case of reflexion from water at the proper angle, is ^ Part

of that of the incident wave. This minimum value increases rapidly,

as the index of refraction increases, and thus the quantity of light re-

flected at the polarizing angle, becomes considerable for highly refract-

ing substances, a fact which has been long known to experimental

philosophers.

It may be proper to observe, that M. Cauchy {Bulletin des Sciences^

1830,) has given a method of determining the intensity of the waves

reflected at the common surface of two media. He has since stated,

{Nouveaux Exercices des Mathematiques,) that the hypothesis employed

on that occasion is inadmissible, and has promised in a future memoir,

to give a neiv mechanical principle applicable to this and other questions ;

but I have not been able to learn whether such a memoir has yet ap-

peared. The first method consisted in satisfying a part, and only a part,

of the conditions belonging to the surface of junction, and the con-

sideration of the waves propagated by normal vibrations was wholly over-

looked, though it is easy to perceive, that in general waves of this kind

must necessarily be produced when the incident wave is polarized perpen-

dicular to the plane of incidence, in consequence of the incident and

refracted waves being in different planes. Indeed, without introducing

the consideration of these last waves, it is impossible to satisfy the Whole

of the conditions due to the surface of junction of the two media.

But when this consideration is introduced, the whole of the conditions

A2



4 Me GREEN, ON THE REFLEXION

may be satisfied, and the principles given in the Mecanique Analytique

became abundantly sufficient for the solution of the problem.

In conclusion, it may be observed, that the radius of the sphere of

sensible action of the molecular forces has been regarded as unsensible

with respect to the length X of a wave of light, and thus, for the

sake of simplicity, certain terms have been disregarded on which the

different refrangibility of differently coloured rays might be supposed to

depend. These terms, which are necessary to be considered when we
are treating of the dispersion, serve only to render our formulas uselessly

complex in other investigations respecting the phenomena of light.

Let us conceive a mass composed of an immense number of molecules

acting on each other by any kind of molecular forces, but which are

sensible only at insensible distances, and let moreover the whole system
be quite free from all extraneous action of every kind. Then x y and %

being the co-ordinates of any particle of the medium under consideration

when in equilibrium, and

x + u, y + v, z + iv,

the co-ordinates of the same particle in a state of motion (where u, v,

and w are very small functions of the original co-ordinates (x, y, %) of

any particle and of the time (/)), we get, by combining D'Alembert's

principle with that of virtual velocities,

5; 'D
»•{S'*''

+£ J '' +^H =SZ,,'• ^* (1);

Dm and Dv being exceedingly small corresponding elements of the mass

and volume of the medium, but which nevertheless contain a very great

number of molecules, and
$<j>

the exact differential of some function

and entirely due to the internal actions of the particles of the medium
on each other. Indeed, if ^0 were not an exact differential, a perpetual
motion would be possible, and we have every reason to think, that the

forces in nature are so disposed as to render this a natural impossibility.
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Let us now take any element of the medium, rectangular in a state

of repose, and of which the sides are dx, dy, dz the length of the

sides composed of the same particles will in a state of motion become

dx' — dx (1 + Si), dy'— dy(\ + s2), dz''= d*(l + #3) 5

where s
t , s2 , s3 are exceedingly small quantities of the first order. If,

moreover, we make

dy' „ dx' dx
a =

cos<^,, fi-vm< Mt 7 = cos<
rfy

;

a, fi and 7 will be very small quantities of the same order. But, what-

ever may be the nature of the internal actions, if we represent by

cS(p
dx dy dx,

the part of the second member of the equation (1), due to the molecules

in the element under consideration, it is evident, that <p will remain the

same when all the sides and all the angles of the parallelopiped, whose

sides are dx dy' dz', remain unaltered, and therefore its most general

value must be of the form

(p
= function \tu sif s3 , a, fi, y}.

But 8U s2 , s3 , a, /3, 7 being very small quantities of the first order,

we may expand cp
in a very convergent series of the form

(p
=

(p +
</>,

+ (p2 + 03 + &c. :

<po, <pi, &> &c. being homogeneous functions of the six quantities

a, fi, 7, gu sif s3 of the degrees 0, 1, 2, &c. each of which is very great

compared with the next following one. If now, p represent the

primitive density of the element dx dy dz, we may write p dx dy dz

in the place of Dm in the formula (1), which will thus become, since

<p
is constant,

fffp dx dydn^Su +^U +
tLg

jw
J

= fffdx dy dz (50, + $(p2 + &c.) ;

the triple integrals extending over the whole volume of the medium

under consideration.
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But by the supposition, when u = 0, v = and w = 0, the system is

in equilibrium, and hence

= fffdx dy da $fa :

seeing that 0, is a homogeneous function of slf #*, s3 , a, /3, 7 of the

,first degree only. If therefore we neglect fa, fa, &c. which are ex-

ceedingly small compared with
<p2 , our equation becomes

fffp dx dy dz i^ iu +
(-~ It, + -^ SwJ

= fffdx dy dz Sfa (2) ;

the integrals extending over the whole volume under consideration.

The formula just found is true for any number of media comprised in

this volume, provided the whole system be perfectly free from all

extraneous forces, and subject only to its own molecular actions.

If now we can obtain the value of fa, Ave shall only have to apply
the general methods given in the Mecaniquc Analytique. But

fa, being
a homogeneous function of six quantities of the second degree, will in

its most general form contain 21 arbitrary coefficients. The proper
value to be assigned to each, will of course depend on the internal

constitution of the medium. If, however, the medium be a non-crystal-

lized one, the form of fa will remain the same, whatever be the

directions of the co-ordinate axes in space. Applying this last con-

sideration, we shall find that the most general form of fa for non-

crystallized bodies contains only two arbitrary coefficients. In fact, by

neglecting quantities of the higher orders, it is easy to perceive that

_ du _ dv dw
ax dy dz

dw dv _ div du du dv

dy dz' dx dz' T'T" dy dx'

and if the medium is symmetrical with regard to the plane (xy) only,

fa will remain unchanged when — z and — to are written for z and w.

But this alteration evidently changes a and j8 to — a and —
/3. Similar

observations apply to the planes (xz) (yz), If therefore the medium is

merely symmetrical with respect to each of the three co-ordinate planes,

we see that fa must remain unaltered when
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or —
«,

— w, —a, —
/3

or -
y,

-
v, -a, - 7

or — x,
—

u,
—

(3,
— 7

8, w, a, /3

are written for
\ y, v, a, y

x, u, /3, 7,

In this way the 21 coefficients are reduced to 9, and the resulting

function is of the form

*& + H
(% l(~y + La !! + M^ + Ny2

or,dv dw Q du dw „ du dv

dy
'

dx dx' dz dx
'

dy
^2 '

(A).

Probably the function just obtained may belong to those crystals

which have three axes of elasticity at right angles to each other.

Suppose now we further restrict the generality of our function by

making it symmetrical all round one axis, as that of 8 for instance.

By shifting the axis of x through the infinitely small angle $6 ;

and

X
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and thus we get

under which form it may possibly be applied to uniaxal crystals.

Lastly, if we suppose the function 2 symmetrical with respect to all

three axes, there results

L = M= N,

P=Q =#;
and consequently,

^
[dy

'

d% dx' dz dx' dy\'
>

or, by merely changing the two constants and restoring the values of

a, /3, and 7,

, (du dv dw\-
^2

\dx dy d»J

(C).

7
i/du dv\~ (du dw\* (dv dwy .(dv dw du dw du dv\\

\\dy dx] Was dx) \dx dy) \dy' dz dx' dz dx'dy))'

This is the most general form that (p2 can take for non-crystallized

bodies, in which it is perfectly indifferent in what directions the

rectangular axes are placed. The same result might be obtained from

the most general value of 2 , by the method before used to make
<p3

symmetrical all round the axes of z, applied also to the other two axes.

It was, indeed, thus I first obtained it. The method given in the text,

however, and which is very similar to one used by M. Cauchy, is not

only more simple, but has the advantage of furnishing two intermediate

results, which may possibly be of use on some future occasion.
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Let us now consider the particular case of two indefinitely extended

media, the surface of junction when in equilibrium being a plane of

infinite extent, horizontal (suppose), and which we shall take as that

of (yz), and conceive the axis of x positive directed downwards. Then

if p be the constant density of the upper, and pt
that of the lower

medium, 2 and 2
" the corresponding functions due to the molecular

actions. The equation (2) adapted to the present case will become

fffp dx dy d% tgp
Su + -~ lt> + -^ lw\

+ fffp. d* dy d%
\jf

*«, +
rfjr

*•, + -$ 3™
j

, (3).

= fffdx dV d%& + fffdx dy dz <$> ;

u
t , v

t , wt belonging to the lower fluid, and the triple integrals being
extended over the whole volume of the fluids to which they respectively

belong.

It now only remains to substitute for 2 and ffi their values, to effect

the integrations by parts, and to equate separately to zero the coefficients

of the independent variations. Substituting therefore for
<p2 its value (C),

we get

fffdx dy dx S(p2

. rrr , , » f (du dv dw\ [d$u d$v d$w\ )= - A^dxdy d%
\{Tx

+
Ty

+ ^)\^ +
~^

+
-d^))

J? /7T/7 // // \(dw dv\ (dlu d$v\ (du dw\ ld§u d$w\
•'•'•' *

\\dy dx) \dy dx) \d% dx) \d% dx I

(dv dw\ (dSv d§w\ r/rf» d$w dw dly\

\d% dy) \d% dy) L \dy d% d%' dy )

(du d§w dw d%u\ (du d$v dv dSu\ -i 1

\dx' d% d%' dx] \dx dy dy' dx/jj
Vol. VII. Paet I. B
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/ttj j 7 i 4 d (du dv dw\ n rd2u d2u d fdv dw\-\] .

/ a d (du dv dw\ jfTd^v d2
v d /du div\~]\

.

\ «ty

'

Wa? dy dz J L rfir das
2

dy \dx dz) -1 f

\ a d_ [du
rfv dw\ rd2w d2w d (du dv\~\ 1 .

1 dz'Kdx dy dz) L dx2

dy
2

dz' \dx dy) J J

"*'

seeing that we may neglect the double integrals at the limits x = — ee ,

/y
= +co, s = + oo; as the conditions imposed at these limits cannot

affect the motion of the system at any finite distance from the origin ;

and thus the double integrals belong only to the surface of junction, of

which the equation, in a state of equilibrium, is

* x.

In like manner we get

fffdxdydzW?

+ the triple integral;

since it is the least value of x which belongs to the surface of junction
in the lower medium, and therefore the double integrals belonging to

the limiting surface, must have their signs changed.

If, now, we substitute the preceding expression in (3), equate sepa-

rately to zero the coefficients of the independent variation 8u, §v, Sw,

under the triple sign of integration, there results for the upper medium
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d*u . d_ idu dv dw\ _ (d2u d"u d idv dw\ 1

p ~df
~A

dx'\dx
+
dy

+
dz)

+
[dy

1 +
~d%

2
~
dx' Xjdy^ ~d%)y

d2
v . d idu dv dw\

-n\d
2
v d2

v d idu dw\)
9
~dt2

~
dl/'\dx'

+
dy

+
~dj)

+
\dx

1 +
dzT ~d^'(d^

+
'd^)f'

(4);

d 2w _ . d idu dv dw\ „ (d 2w d 2w d fdu dv\i
p dt2

~
dz'\dx dy d%) \dx

2

dy
2 dz'\dx dy)]''

and by equating the coefficients of Su
/}

Sv
t , $w

t , we get three similar

equations for the lower medium.

To the six general equations just obtained, we must add the con-

ditions due to the surface of junction of the two media; and at this

surface we have first,

u = u
t , v = v

t ,
w = w

t , (when x = 0), (5);

and consequently,
%u = $u

t ; 8v = Sv
t ; §w = Sw,.

But the part of the equation (3) belonging to this surface, and which

yet remains to be satisfied, is

/r**{*.(£*&)***(&*&W«
and as 8u = Su

t , &c, we obtain, as before,

. idu dv dw\ „ idv dw\ . ldu
t dv^ dw \

__
„ idv^ dw \

\dx dy dz J \dy dz J
' \dx dy dz) '

\dy d% I

„ idu dw\ _ ldu
/

dw \
_

\d% dx)
~

' \d% dx J
'

and these belong to the particular value x = 0.

B2
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The six particular conditions (5) and (6), belonging to the surface

of junction of the two media, combined with the six general equations
before obtained, are necessary and sufficient for the complete determi-

nation of the motion of the two media, supposing the initial state of

each given. We shall not here attempt their general solution, but

merely consider the propagation of a plane wave of infinite extent,

accompanied by its reflected and refracted waves, as in the preceding

paper on Sound.

Let the direction of the axis of %, which yet remains arbitrary, be

taken parallel to the intersection of the plane of the incident wave
with the surface of junction, and suppose the disturbance of the particles

to be wholly in the direction of the axis of as, which is the case with

light polarized in the plane of incidence, according to Fresnel. Then
we have

= u, = v, = m
,

=
v/,

and supposing the disturbance the same for every point of the same

front of a wave, w and tv
l
will be independent of %, and thus the three

general equations (4), will all be satisfied, if

d2w „ (d2w d2

w)
p lf

=B
Xd^

+
-df}'

ft
or by making — = 7

s
,

d2w . (d2w d2

w)

dt '' \S* ^Wl' (7) "

Similarly in the lower medium we have

d2

w, 2
ld 2

w, d2

w}
f'Xd¥

+
dy

2

}'
(8) 'df

w
t
and 7, belonging to this medium.

It now remains to satisfy the conditions (5) and (6). But these are

all satisfied by the preceding values provided,

w = wn

rydw _ „ dw,
dx ' dx

'
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The formulae which we have obtained are quite general, and will

apply to the ordinary elastic fluids by making B — 0. But for all the

known gases, A is independent of the nature of the gas, and conse-

quently A — Ar If, therefore, we suppose B = B
lt

at least when we
consider those phenomena only which depend merely on different states

of the same medium, as is the case with light, our conditions become*

w = w
t

\

dw^ _ dw\ (when x= 0), (9).

dx dx)

The disturbance in the upper medium which contains the incident

and reflected wave, will be represented, as in the case of Sound, by

w —f{ax + by + ct) + F( — ax + by + ct);

f belonging to the incident, F to the reflected plane wave, and c being

a negative quantity. Also in the lower medium,

«, -/(«,* + by + ct).

These values evidently satisfy the general equation (7) and (8), pro-

vided c* = 7
2
(a* + ¥), and c

2 = y* {aj + 5*) ; we have therefore only to

satisfy the conditions (9), which give

f(by + ct) + F (by + ct) =/(Jy + cf),

af (by + ct)
- aF' (by + ct) - «,/' (by + ct).

Taking now the differential coefficient of the first equation, and

writing to abridge the characteristics of the functions only, we get

v-(i+?)jr. -*w-(i-J)/;
*
Though for all known gases A is independent of the nature of the gas, perhaps it is

extending the analogy rather too far, to assume that in the luminiferous ether the con-

stants A and B must always be independent of the state of the ether, as found in different

refracting substances. However, since this hypothesis greatly simplifies the equations due to

the surface of junction of the two media, and is itself the most simple that could be selected,

it seemed natural, first to deduce the consequences which follow from it before trying a more

complicated one, and, as far as I have yet found, these consequences are in accordance with

observed facts.
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and therefore

1- ^
F[ a _ a -

a, _ cot 9 - cot 9, _ sin {9- 9) #

J" a
t

~
a + a

t

~
cot 9 + cot 9

t

~
sin (9/

+ 9)
'

a

9 and 9
t being the angles of incidence and refraction.

This ratio between the intensity of the incident and reflected waves,

is exactly the same as that for light polarized in the plane of incidence,

(vide Airy's Tracts, p. 356,) and which Fresnel supposes to be propagated

by vibrations perpendicular to the plane of incidence, agreeably to what

has been assumed in the foregoing process.

We will now limit the generality of the functions f, F and ft , by

supposing the law of the motion to be similar to that of a cycloidal

pendulum; and if we farther suppose the angle of incidence to be in-

creased until the refracted wave ceases to be transmitted in the regular

way, as in our former paper on Sound, the proper integral of the

equation
diw

l , j
d2w

t
d2

w}
IF ~

7/
1 das'

+
If)

'

will be

w, = e- a''x Bsm^, (10);

where ^ = by + ct, and a' is determined by

7/(6
2

-«;
2

)
= ^ = y(*

2 +«2

), (ii).

But one of the conditions (9) will introduce sines and the other

cosines, in such a way that it will be impossible to satisfy them unless

we introduce both sines and cosines into the value of w, or, which

amounts to the same, unless we make

w = a sin {ax + by + ct + e) + /3 sin (
- ax + by + ct + e), (12),

in the first medium, instead of

w — a sin (ax + by + ct) + (5 sin (
— ax + by + ct),

which would have been done had the refracted wave been transmitted

in the usual way, and consequently no exponential been introduced into
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the value of wr We thus see the analytical reason for what is called

the change of phase which takes place when the reflexion of light

becomes total.

Substituting now (10) and (12), in the equations (9), and proceeding

precisely as for sound, we get

= a cos e — /3 cos e
t ,

= a sin e + fi sin e
t ,

— B = a sin e — 8 sin e ,

a

B = a cos e + /3 cos e
t
.

Hence there results a = 0, and e
t
= —

e, and

tan e = — =
-j- •£ t = -f tan 9.

a b b b

But by (11),

5
bif-^-^-^Fii-y^-OT)*

by introducing ^ the index of refraction, and 6 the angle of incidence.

Thus,

ton,- *^' rin''- 1 >
;

M COS

and as e represents half the alteration of phase in passing from the

incident to the reflected wave, we see that here also our result agrees

precisely with Fresnel's, for light polarized in the plane of incidence.

(Vide Airy's Tracts, p. 362.)

Let us now conceive the direction of the transverse vibrations in

the incident wave to be perpendicular to the direction in the case

just considered
;
and therefore that the actual motions of the particles

are all parallel to the intersection of the plane of incidence (xy) with

the front of the wave. Then, as the planes of the incident and re-

fracted waves do not coincide, it is easy to perceive that at the

surface of junction there will, in this case, be a resolved part of the

disturbance in the direction of the normal; and therefore, besides the
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incident wave, there will, in general, be an accompanying reflected and

refracted wave, in which the vibrations are transverse, and another pair

of accompanying reflected and refracted waves, in which the directions

of the vibrations are normal to the fronts of the waves. In fact, unless

the consideration of the two latter waves is also introduced, it is im-

possible to satisfy all the conditions at the surface of junction ; and these

are as essential to the complete solution of the problem, as the general

equations of motion.

The direction of the disturbance being in plane (xy) w = 0, and as

the disturbance of every particle in the same front of a wave is the

same, u and v are independent of * Hence, the general equations (4)

for the first medium become

d2u _ 2 d idu dv\
,
d idu dv\

df
~

dx \dx dy)
'
dy \dy dx)

'

d*® _ 2
d

(du_
dv\ 2 d fdv du\

~d? =S d~y \dx
+
dy)

+y
dx[dx~dy)'

where g* = — , and y
2 = — •

These equations might be immediately employed in their present

form; but they will take a rather more simple form, by making

d<p dty

dx dy
'

(13).

d(p d\f/ 1

dy dx '

<p and ^ being two functions of x, y and t, to be determined.

By substitution, we readily see that the two preceding equations are

equivalent to the system,

d? ~* Ux2 +
dy

2
)'

(14).

df
" 7

\dx*
+

dy* I
'
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In like manner, if in the second medium we make

' dx dy
'

(15).

v - d(f> '
d^>

'

dy dx '

we get to determine
<p,

and
>|//

the equations

df *' \da* dy
2

^ _ * * (
dl±i x £*<

(16).

df " \dx* dtf

and as we suppose the constants A and B the same for both media,

we
,
have

7, g,'

For the complete determination of the motion in question, it will be

necessary to satisfy all the conditions due to the surface of junction of

the two media. But, since w = and w
t
= 0, also, since u, v, u

t , v, are

independent of as, the equations (5) and (6) become

u = u
t , v = »,;

\dx dy) dy \dx dy I dy

du dv _ du, dv,

dy dx dy dx
'

provided x = 0. But since x = in the last equations, we may differ-

entiate them with regard to any of the independent variables except x,

and thus the two latter, in consequence of the two former, will become

du _ du, dv _ dv,

dx dx' dx dx'

Substituting now for u, v, &c, their values (13) and (15), in
<p

and
\f/,

the four resulting conditions relative to the surface of junction of the

two media may be written,

Vol. VII. Part I. C
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dx dy
dj, = d<f>, d^y

dx dy

d(p

dy

d^f _ d(p/

dx dy dx

d2 d2^ m £& j gjfc
d#2

da; dTy

d 2

V (when a; = 0) ;

rfo;
2

dxdy

d> _ d>, d>,
da;

2 d# dyda; dy da;
2 dx dy dx2

or since we may differentiate with respect to y, the first and fourth

equations give

d2

^ ,
d2^_d2f dS//,+ +

dx2

dy
2 dx2 T

dy
2 '

in like manner, the second and third give

d2

<p d2

(p

dx2
+

dy
2

d2

0, + d'fr
dx2 '

dy
2 '

which, in consequence of the general equations (14) and (16), become

^NL-._^ flml ** - d% *>

y
2df 7/

2df g 2dt2
~
gfdf

Hence, the equivalent of the four conditions relative to the surface

of junction, may be written

d<p d^/ _ d(f>t d^l

dx dy dx dy

d(p d^> _ d(pt dy\r t

dy dx dy dx

d2

<p d2

(p,

g*df- gfdf

d> d>,
7,

> (when x = 0),

7 df 2df

(17).

If we examine the expressions (13) and (15), we shall see that the

disturbances due to
<p

and
<f>/

are normal to the front of the wave to

which they belong, whilst those which are due to ^ and ^ are trans-

verse or wholly in the front of the wave. If the coefficients A and B
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did not differ greatly in magnitude, waves propagated by both kinds of

vibrations must in general exist, as was before observed. In this case,

we should have in the upper medium

\//
= f{ax + by + ct) + F{— ax + by + ct),

and (18).

<P
— X (

~ a'x + by + ct) ;

and for the lower one

^,=f, («> + h + ct),

(19).

The coefficients b and c being the same for all the functions to

simplify the results, since the indeterminate coefficients a' a
t
a' will

allow the fronts of the waves to which they respectively belong, to

take any position that the nature of the problem may require. The

coefficient of x in F belonging to that reflected wave, which, like the

incident one, is propagated by transverse vibrations would have been

determined exactly like a] at d, as, however, it evidently = —
a, it was

for the sake of simplicity introduced immediately into our formulae.

By substituting the values just given in the general equations (14)

and (16), there results

(f = (a
* + b2

) 7
2 = (a* + ¥) 7/

2 =
(a'

8 + ¥)g
2 =

(«/
2 + b*)g%

we have thus the position of the fronts of the reflected and refracted

waves.

It now remains to satisfy the conditions due to the surface of

junction of the two media. Substituting, therefore, the values (18) and

(19) in the equations (17), we get

" § " .

x =
-p x, ;

-a'x
'

+ b(f' + F') = a; x; + bf;,

bx
' - a(f - F') = bx;

- aj;;

where to abridge, the characteristics only of the functions are written.

C2
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By means of the last four equations, we shall readily get the values

of F"'x" f"x" m terms of f", and thus obtain the intensities of the

two reflected and two refracted waves, when the coefficients A and B
do not differ greatly in magnitude, and the angle which the incident

wave makes with the plane surface of junction is contained within

certain limits. But in the introductory remarks, it was shewn that

A= = a very great quantity, which may be regarded as infinite, and

therefore g and gt may be regarded as infinite compared with 7 and yr
Hence, for all angles of incidence except such as are infinitely small,

the waves dependent on
<p

and
<p t

cease to be transmitted in the regular

way. We shall therefore, as before, restrain the generality of our

functions, by supposing the law of the motion to be similar to that

of a cycloidal pendulum, and as two of the waves cease to be transmitted

in the regular way, we must suppose in the upper medium

\J,
= a sin {ax + by + ct + e) + /3 sin (

— ax + by + ct + e),
and (20).

(p
= e

ax
(A sin

\f/
+ B cos

\J/ ) ;

and in the lower one

v//
= a sin (a x + by + ct),

(21).

<t>,
= e

a,x
{A, sin ^ + B

t
cos ^ ),

where to abridge \//
= by + ct.

These substituted in the general equations (14) and (15), give

c« = 7
2
{a* + P) = 7; {a? + b>) =g*(- a'

2 + b2

) =g?{- «/
2 + b2

),

or, since g and g, are both infinite, N

b = a' = a;.

It only remains to substitute the values (20) (21) in the equations

(17), which belong to the surface of junction, and thus we get

bA sin
\//o

+ bB cos ^ + ba cos
(>//

+ e) + bfi cos
(\|/

+ e)

m — bA
t
sin

\f/
— bB

t
cos

\// + ba
/
cos

>|/- »
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bA cos
v//o

- bB sin
\J/-

- aa cos
(>//<,

+ e) + «/3 cos
(\|/

+ 0,)

= bA
t
cos \^

— iB
t
sin

v//
— a,^ cos >^ , (22).

— {A sin
\|/-

+ B cos
\|> )

= — (A, sin
\js

+ -B, cos ^ ),

1 1—
\a sin

(v|/
+ e) + /3 sin (^ + e)\ = —i

a
l
sin

>/,„.
7 7/

Expanding the two last equations, comparing separately the coefficients

of cos >//
and sin ^ , and observing that

ff y— = — = m suppose,
o/ 7/

we get

# = m
2^,

(23).
o cos e + /3 cos e,

=
/**<*,»

a sin e + /3 sin e,
= 0.

In like manner the two first equations of (22) will give

= A + A
/

— a sin e — /3 sin e
t ,

= A — A, +
-j-

1 + t (p cos e
t

— a cos e),

= 2? + -B, + a COS + /3 COS 0,
— a

/5

= -B — -B, + t (/3 sin
<?,
— a sin e) ;

combining these with the system (23), there results

= A + A
t ,

= B + B, + (fx
2 -

l),a,,

aa, a
(24).

= A - A, +
-jr-'

+ t (/3 COS 9,
- a COS e),

= 2? — B
t
+ v (/3 sin e

t

- a sin e).
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Again, the systems (23) and (24) readily give

a Sin e = — A . -"Hj
-^ a.

and therefore

/3
s

a COS e = ^ . f m
2 + —

j
a ,

_ . . (m
2 -

l)
2
6

fieose = |. (m

2 -
J) «,;

,.+ ir ,(„.-sy
+ (),.- 1).g

"^v +
i)..(„.

+
|)'

+ („'-ir^

(25).

(26).

When the refractive power in passing from the upper to the lower

medium is not very great, p. does not differ much from 1. Hence, sin e

and sin e
t
are small, and cos e, cos e

t
do not differ sensibly from unity ;

we have, therefore, as a first approximation,

a sin2 9 cot 9,

/3
"

a
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= /u
2

, i. e., when tan (9 + 9) — to
,

Co

which agrees with experiment, and this minimum value is, since (27)

b

gives
- - M ,

£-, (w } "2

0'->v
(28) .

4(/u + 1) fx* + (m
-

1) -|

4
If /u.

= -
, as when the two media are air and water, we get3

- = — nearly.

It is evident from the formula (28), that the magnitude of this

minimum value increases very rapidly as the index of refraction in-

creases, so that for highly refracting substances, the intensity of the

light reflected at the polarizing angle becomes very sensible, agreeably

to what has been long since observed by experimental philosophers.

Moreover, an inspection of the equations (25) will shew, that when we

gradually increase the angle of incidence so as to pass through the po-

larizing angle, the change which takes place in the reflected wave is not

due to an alteration of the sign of the coefficient (5, but to a change

of phase in the wave, which for ordinary refracting substances is very

nearly equal to 180°; the minimum value of /3 being so small as to cause

the reflected wave sensibly to disappear. But in strongly refracting sub-

stances like diamond, the coefficient /3 remains so large that the re-

flected wave does not seem to vanish, and the change of phase is con-

siderably less than 180°. These results of our theory appear to agree

with the observations of Professor Airy. (Comb. Phil. Trans. Vol. iv.

p. 418., &c.)

Lastly, if the velocity 7, of transmission of a wave in the lower

exceed 7 that in the upper medium, we may, by sufficiently augment-

ing the angle of incidence, cause the refracted wave to disappear, and

the change of phase thus produced in the reflected wave may readily

be found. As the calculation is extremely easy after what precedes, it
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seems sufficient to give the result. Let therefore, here, n = —
, also

7
e, e

t
and 6 as before, then e

t
— —

e, and the accurate value of e is

given by

*. /~n—T75 Tn (m
2 —

l)
2 tan 6

tan e - n Vfi* tan2 9 - sec2 - K——-z-
.

M + 1

The first term of this expression agrees with the formula of page 362

Airy's Tracts, and the second will be scarcely sensible except for highly

refracting substances.



II. On Molecular Equilibrium. Part I. By the Rev. Philip Kelland,

M.A., Queens'" College, Cambridge; Professor of Mathematics in

the University of Edinburgh.

[Read March 26, 1838.]

INTRODUCTION.

1. Whatever ideas may have been entertained of the nature of

forces at a distance from the centre of action, there appear to have

been no very definite notions current respecting molecular forces, till

within a few years from the present time. The obvious change in

the attractions of the different parts of a solid body, produced by sepa-

rating the particles by ever so small an interval ; the fact that the

attraction of cohesion when destroyed cannot be restored by any

ordinary pressure, indicated that the force which the particles exert on

each other in their positions of equilibrium, is of a nature totally distinct

from the appreciable attractions and repulsions at finite distances. New-

ton only threw out hints respecting the nature of forces of this kind,

never applying them, except in a popular manner in his Optics. One
kind of molecular force which he conjectures is that of the, particles

of air and the magnetic ones, Newton applies to calculation, but he

by no means supposes his hypothesis the correct one; on the contrary

he appears to entertain great doubts on the subject, for he concludes

his scholium by observing: "Whether elastic fluids do really consist

of particles so repelling each other, is a physical question. We have

demonstrated the properties of fluids consisting of particles of this kind,

that hence philosophers may take occasion to discuss that question."

Vol. VII. Part I. D



26 PROFESSOR KELLAND, ON MOLECULAR EQUILIBRIUM.

The phenomena of electricity and magnetism did indeed suggest

hypotheses respecting the internal constitution of bodies, but these

hypotheses, for the most part, were only partial ones. Those of

iEpinus, Cavendish, and Franklin, fully establish a disposition of dif-

ferent sets of particles, but leave the possibility of such a disposition

as consistent with the conditions of equilibrium to other hypotheses of

a nature totally different from the one applied. With one or two ex-

ceptions it would appear, that all writers have regarded the molecular

force as of a nature either distinct from that of the attractions and

repulsions of the electric particles, or as the fundamental expression

of which the law, in the latter case, is only a limiting form.

About the middle of the last century, however, Dr Knight published
his "

Attempt to explain all the Phenomena of Nature by means of

two Principles, Attraction and Repulsion." The hypothesis adopted in

this work, appears to be nearly the same as that usually adopted by
theorists in Chemistry of the present day, and which is not essentially

different from that which forms the basis of the present Memoir, with

the exception, that the Author supposes the law of force to be the

inverse power of the distance. Bodies are imagined to be formed

of combinations of two groups of particles acting differently on each

other, the one set mutually attractive, the other mutually repulsive;

the former, by peculiar arrangements aggregated together, determine

the nature of different substances ; whilst the latter are collected around

these groups, and form their atmospheres. I regret that I have not

been able to meet with Dr Knight's work, which appears from the

notices of it, to have been a sound and admirable treatise.

A few years later appeared Boscovich's " Theoria Philosophic Natu-

ralis ad unicam legem virium, in Naturd existentium redacta" a work

which from its title professes the reduction of all forces to one and

the same law. As that law will be found to be the conclusion from

another more simple law, I shall briefly state its principal features.

(l). "The atoms of matter are endued with attractive or repulsive
forces to one another, of which the law of variation is the same for

all."



PROFESSOR KELLAND, ON MOLECULAR EQUILIBRIUM. 27

(2). "Action and reaction are equal."

(3). "The nature of the force is such that at different distances

it is attractive and repulsive alternately, so that a particle in reced-

ing from another, is first repelled, then attracted, then again repelled,

and so on."

(4).
" When the distance is indefinitely diminished, the force is re-

pulsive and is indefinitely increased; and when the distance is inde-

finitely increased, the force is attractive and diminishes as the inverse

square of the distance."

Such are the general features of Boscovich's law of molecular action.

It will be our endeavour to deduce from an hypothesis not very dif-

ferent from that of Knight, a law resembling the above in its general

features.

2. Notwithstanding the long interval that has elapsed since the

publication of Boscovich's work, very little has been done on the sub-

ject, except by way of application, until very lately. Capillary attrac-

tion is a phenomenon, the solution of which, clearly requires a molecular

hypothesis ; but, unfortunately, the nature of the question is such that

it is satisfied without the aid of any specific restriction to the law,

except that it should be one which very rapidly diminishes as the dis-

tance increases, and is insensible at distances appreciable by our senses.

Hence, we know that Laplace in his Mecanique Celeste, and Poisson

after him, have not cared to assume any particular law of force, and

even if they had, no means would have been found for its verification.

One result of this fact appears to be, that the circumstance of an

active force of this nature being sufficient to explain a phenomenon

totally different in character from those of cohesion and combination, by
which it is obviously suggested, induced Laplace himself to the belief

that this was the ultimate law. If such be not the case, I am unable

to account for his adoption of such a law, absurd as it appears, in

his explanation of the phenomena of heat. It would have been sup-

posed, that this was an opportunity of applying the beautiful analysis

of the former parts of his work to the reduction of the molecular law

to some simple form. But such is not the case, nor does Poisson, even

D 2



28 PROFESSOR KELLAND, ON MOLECULAR EQUILIBRIUM.

in the Memoir where he detects the insufficiency of Laplace's hypo-

thesis of capillary attraction, attempt to ascend higher in the investiga-

tion. In his Theory of Heat too, he introduces discrete molecules only

for the purpose of generalizing the problems of conduction and ra-

diation, without attempting to solve those of expansion and crystal-

lization : so that he makes no progress whatever in the explanation of

phenomena.

3. In my Memoir on Dispersion, I endeavoured to shew that the law

of the inverse square of the distance, is that of the attraction or repulsion

of the particles of light, and in subsequent Memoirs, I have endeavoured

to reduce some of the phenomena of sound and heat to the same

law. Nothing, however, was effected with respect to the equilibrium

of the molecules. The latter object has lately been accomplished, at

least partially, by M. Mossotti, in a Memoir "On the Forces which

regulate the Internal Constitution of Bodies." The hypothesis of Mossotti

is the same as Dr Knight's, except that the forces vary inversely as

the square of the distance. It is proved, that one set of particles may
have an atmosphere of another set, the density of which varies rapidly

in receding from the surface of the former. M. Mossotti then endeavours

to find the conditions of equilibrium of a particle of the first or the

material set. It is ion this point that I conceive M. Mossotti's hypothesis

completely fails. The law of action of two particles as deduced by
M. Mossotti, is composed of two parts, a repulsive part which vanishes

when the distance is sensible, and an attractive part which varies in-

versely as the square of the distance. Now when it is borne in mind

that the whole set of forces acting on any particle must be sufficient

to retain that particle in equilibrium at a certain distance from the one

next to it, we shall perceive that this law of action requires that the

mutual distance, or the density of the particles, should vary as the

magnitude of the body. I do not mean to assert, that the density

should be increased in the same ratio as the mass is increased, but that

it must be so increased, that the repulsive force of the adjacent particles

should be very nearly in the proportion of the linear magnitude of the

body. I cannot think this a probable, hardly a possible, condition of

matter. The state of the surface may depend, and probably does so.
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on the thickness of the solid, provided the solid be very thin, but it

can scarcely be conceived to do so in other cases, much less to vary

equally with the superficial extent of the surface itself.

4. In order then to determine as nearly as possible, what is the

law of distribution of the particles of caloric, or the universally diffused

system of particles, as well as what is the law of aggregation of the

material particles, which determines whether the arrangement have the

properties of elasticity, fluidity, solidity, crystalline arrangements, &c.

I have examined a number of different arrangements, and investigated

the conditions of their equilibrium and stability.

In the present part, I have said little about the application to dif-

ferent states of consistence, deeming it more prudent to make a series

of calculations in the first place. In fact, it is most probable that the

forms of the results will in all cases, as they certainly are in those

I have already tried, be very different from those which a popular view

of the subject would suggest. In my treatise on Heat, however, will

be found some applications roughly stated, which I hope more fully to

investigate in the sequel.

Investigation of the Conditions of Equilibrium.

5. I purpose to commence my investigation, by retaining M. Mos-

sotti's hypothesis of two systems of particles repulsive towards atoms

of their own kind, but each respectively attractive towards the atoms

of the other. We will call one system of particles caloric, and the

other matter; the masses of the atoms of the former being very small

compared with those of the latter. We will suppose the former dis-

tributed through space, whilst the latter occupy only certain given

positions: in both, the density at different points will be essentially dif-

ferent, but the particles of the latter medium, will in all cases be sup-

posed wherever they exist, to be much more widely separated than those

of the former, so that a material particle may be considered as a nucleus,

about which the particles of caloric are collected, so as to form its

atmosphere.
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To find the conditions of equilibrium of a particle of caloric.

6. Let x, y, z be the co-ordinates of a particle of caloric measured

from any point as origin, x, y, % those of another particle, D the

density of the caloric estimated by the number of particles in a given

volume in the neighbourhood of the former particle : D' the correspond-

ing quantity for the latter; let also X, Y, Z be the co-ordinates of

a particle of matter supposed spherical, and collected at its centre of

gravity in all cases in which its own attraction or repulsion is to be

calculated; call P the mass of an atom of caloric, M that of an atom

of matter, each estimated by the attraction or repulsion exerted by it

on a unit of either caloric or matter at the distance unity : let V be

the sum of each particle of caloric, divided by its distance from that

whose co-ordinates are x, y, z; U the sum of each particle of matter

divided by its distance from the same point ; also, let r be the former

distance, R the latter corresponding to the particles respectively, whose

co-ordinates are x ', y, %'; X, Y, Z, then

y = p rrrdx
'

dy'dz-H

R

I have adopted integrals for the caloric, as it is supposed that the

particles are so near each other, that the variation of action due to the

.situation of a particle with respect to those immediately surrounding it,

forms no important element in the calculation. I shall have occasion

to mention this subject more explicitly in the sequel.

In order to fix the ideas, let it be supposed that x', y, z; X, Y, Z
are in advance of xy%, so that

r = \/V - xf + {y'
— yf + (%'

-
zf,

R = V(X- xf + (Y- yf + (Z- %f ;

then the action of the caloric on the particle in question parallel

dV
to the axis of x is P. -7—, and since the force is repulsive, it tends to
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diminish x; for a like reason, that of the matter on the same particle

is jP.-t— tending to increase x; consequently the whole force with which

the particle is urged in the direction of the axis of x is P
i—j j—].

7. By the substitution of integrals in the place of sums, the ex-

pression V, as before noticed, is no longer the total action of the caloric

on the particle, subject as it is to the powerful variations of action of

these particles by which it is immediately surrounded
;

it is in fact,

the total action, omitting these and corresponding variations for the

other particles. In order to obtain the conditions of equilibrium of

the particle, we must apply another force, viz. the variation of action

due to the place of the particle.

Without entering into calculation respecting this force, it is evident

at once, that its value is increased in the same ratio as the increment

of the density at that point, and must consequently vary as —*—
; but

whether it might not also vary as D, does not appear so obvious. The

following investigation is perhaps more satisfactory.

8. Conceive a portion of the mass to form a prism* of which the

axis is parallel to x. Let its section be unity, and its length Sx, and

suppose the caloric within it to have the uniform density D, then the

action on it, due to the above forces, is

pm*^-^):\dx ax )

let p be the pressure on the end next the origin, p + -^- Ix + &c. that

on the further end, then we must have

dp - PD (— -— )
•

dx \dx dx J
'

here, then, by taking the aggregate of a large nnmber of particles,

we eliminate the effect of the molecular variations which retain any
individual one in its place, and may consider p as the actual pressure

exerted, by whatever means it matters not, to retain the particles
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which form one end of the prism in their places. Now the surround-

ing particles will produce this effect, and it is obvious that the

action on any individual particle will vary as the number of particles

which act on it, supposing the positions left out of consideration. Thus,

suppose («) particles occupying certain positions to exert a force F, then

if two particles could be supposed to occupy the place of each one,

the force would become %F, and so on. Under these circumstances,

then, the repulsion on an individual particle would vary as the density,

and whatever be the mode of arrangement, the same law appears the

most simple and probable. Similar reasoning applies to the density of

the particles acted on, and we conclude that p oc Lf,

Let p = \ elf ;

dp r.dD
dx dx '

t, dD P (dU dV\
and then -j— = — -j j— ,dx c \dx dx J

d*D P idU d2V
dx'

~
~c \d&

~
~d¥ 1

'

d2D P id*U

dtf c \ dtf

d*D P [d*U
dz2 -f(

!

dz"

d2 V \

dtf)

drr
dz2

(i);

but
d2 V d"V d*V . __
-d¥

+
dy*

+ ~d*=~^Pn

d2 U d2 U d2 U
+ S-T + —r^r =dx2

dtf dz2

(2).

(3).

. d'D d2D d2B
hence -j^- + -x-* +dx2

dtf dz2
= -f(

P id2V d2 V d'V
dx 1

dtf dzr)
4ttP2

if we designate

c

4ttP2

D

(4).

by «2
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10. The solution of this equation will be found in various Memoirs

of M. Poisson and others: it is

4g-aV(i,-i)»+(jr ,)« + (j,-0»
Z> = 2

the symbol 2 having reference to points whose co-ordinates are x
t , yt , %r

With respect to the points in question there can be no difficulty,

for, from the form of the solution, it is evident that the medium is

influenced symmetrically with respect to any such points, and moreover,

the solution of (2) will give V a function of the same quantities,

whence equation (1) will determine U to be a function of the same;
M

but the value of U being 2 -=* it is obvious that all the quantities

are functions only of R, or of \/{X— x)
2 + (Y—yf + (Z— %f,

hence the value of D becomes

^ e -a\/(X-x)* + (r-y)*+(Z-z)>
Z> = 2

= 2

Vrx-xf + (r- yy + <z- %y

Ae- aR

B '

11. It may be remarked, that in this solution, as in the corres-

ponding one in my treatise on Heat, I have departed slightly from

M. Mossotti's Memoir, by considering the attraction or repulsion of

a particle on another, to be proportional to the product of their masses,

so that P2
, MP, M2 are respectively the forces exerted at the distance

unity, by P acting on P, P acting on M, and M acting on M. The

reasoning of M. Laplace, to which M. Mossotti refers for the proof
of the theorem that the pressure varies as the square of the density,

I have not retained, as I conceive it does not take notice of the real

point of difficulty ; namely, that the force which constitutes the right-

hand side of the equation, is not the force on any individual particle,

unless the sums are so expressed as to indicate the small variations due

to the rapid change of action of those particles immediately surround-

ing that acted on. Indeed, were they the real actions, their sum would

Vol. VII. Part I. E
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doubtless be zero. This difficulty will be surmounted by taking U and

V, as I have done, not for the absolute forces, but for the sum of all the

forces if the particles were distributed symmetrically: the pressure, in

this case, which arises from the action of the particles contiguous to that

under consideration, will obviously vary as the square of the density.

12. I proceed in the next place, to determine the value of V, by
two different methods, the comparison of which, will prove that no

inaccuracy arises from the adoption of direct variation in deducing the

equation (2), provided such variation is known to be uninterrupted.

To integrate equation (2) we must observe that

ft2 ?.— r/2S— rf2?.—a2j B a *R R _ n
~inr +

dy*
+

d%*

and must consequently include 2-^ in the value of V in the place and

with the interpretation of an arbitrary constant.

_ . d*V d2V d*V
\ ^Ae-"*We have

-d^
+
-dy

+^ = ~ ^^-R--
The complete value of V will therefore be

C being given by the equation

Co2 = 4ttP;

Ae~ aR
\ 4ttPtr-v\B Ae-° R
\

47T.

13. In order to calculate the value of V directly, it is most con-

venient to employ polar co-ordinates; the particle M being the pole.

Let A be the place of the particle acted on, P that of any other

particle, AP = r, AM = R, angle PMA = 9, MP = P ; radius of a

particle
=

/, then 2 7rp
2
sin 0d6dp is the volume of an elementary

annulus ;
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JJ pr

rr 2irp sin 9 e- a P dQ dp pM Vp2 + R*-2pBcosd

m sApj^e-^p^^-2Bpcose + ^ df>

For the portion included within a spherical surface, whose centre is

M and radius MA, we must have the limits 8 = 0, 8 = w and p less

than R\ for the remainder p is greater than R;

hence ^ = ZAP.f
R

?£ dpe""> {R + P-(R- P)\

+ %AP. r^dpe-"r{p + R-(p-R)}

m ^Ap rn
^pe-^dp I ^Ap r- 4wr .,d

- -9 a p \
^e

~ al
(1 + <**) _ 4tt e—R\-^Ar \R~- a2 a2 ^RJ

The coefficient -» being the same as obtained by the other method,
a

shews that equation (2) is correct; we also perceive that

B = Ae~ al
(l +al).

14. The equation (1) will give a relation between a, c and the

other quantities which we proceed to investigate.

From the value of D (10),

^ = 2^ («-* + «**-•*) (X-*),

also ~ = ^2^(B-Ae-
aR -AaRe-'R

)(X-x),

E 2
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hence the equation gives

24 (e-
aR + «Re~aR) {X -

x)B3

\M 4nrP~
7 2S "

Sf-»-'««-
, ' +

-*«"'>} (>-*).

whence it evidently follows that

KB?
" ^^j ~

'

and — =1.
Co2

The last equation merely verifies the operation, since the value of a

which it gives, is no other than its assumed value in (Art. 9).

The other equation gives M = —
cB~ P
PM

but from the nature of c, it evidently varies as P\ call it therefore

aP 2

, where a is a quantity independent both of M and P; the result

is

, 4tt
a = ^'

B ~^P'
or a is the same for all substances, whilst B varies as the attractive

energy of the particle of matter.

15. This conclusion is of great importance, as it enables us to cal-

culate the effect of any individual particle independently of those by
which it is accompanied. In fact, whatever be the nature of the mass,

any individual particle will be surrounded by an atmosphere of caloric,

g-aR
the density of which varies as —p— , where B is the distance from its
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centre; whilst the density at a given distance varies only as the attractive

energy of the particle. Of course, the expression density does not signify,

the actual amount of aggregation of particles, but merely the aggre-

gation so far as it depends on the particle under consideration.

16. We may verify our conclusion with respect to the value of e,

by the following method :

Conceive only one particle to exist. At a considerable distance R
from its centre, the principal forces which act on a particle of its

surrounding caloric, are the attraction of the particle and the repulsion

of the caloric.

MP
The former force is -g-,- .

™ . . 4ntP*J r ar , 4nrP*A . „ r 1
The latter —«;

—
.)e~

ar rdt =—^— \C - - e~ ar - -e~ ar
\,R*

' J R4 a a

the value of which from r = I to r = a considerable quantity is very

nearly

4,*P*R MP
hence

Ra*
~ W '

. birPB
" " M '

the same value as we obtained by the former process.

17. We have hitherto omitted any consideration of a uniform layer

of caloric distributed over space, so as to act equally on every point.

It is clear, that the effect of such caloric will be found by retaining D
as the excess of density above this uniform density q. The correct

value of V will now be found by subtracting from its value above

the sum of every mass displaced by a material molecule divided by
its distance from the point under consideration ; hence, all we have to

do is to diminish V by a quantity

-
2,q '

3- R~ 3 *P**'B'
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and B = Ae- at (l+al)-^-;

1+al 3 1+al'

The equations in (14) are not affected by this consideration, conse-

quently B is independent of the mean density ; and A is increased

proportionally to it.

18. I propose next to determine the mutual action of two particles.

We have seen that the atmosphere of any particle is perfectly in-

dependent of that of the surrounding particles : it follows, that the action

of two particles on each other, is also independent of the surrounding

medium. The latter supposes, however, that the pressure which is

exerted by the caloric is due to the actions of particles so arranged

as to produce equilibrium ; in fact, the pressure on the surface of a

material particle A, even as far only as it depends on the caloric which

constitutes the atmosphere of B, will vary with the attractions of the

other particles on it, except the system be in equilibrium, in which

case we may suppose, as we have already done, that the pressure cor-

responding to the density Doc D
= hD.

19. Our first point will be to find the value of this pressure.

Let a be the distance between the centres of the particles, / their

radius, P any point in the particle on which the pressure is to be de-

termined; then the area of an annulus is QirPsmedQ,

p—aR
and the pressure on it ZwPhA —p- sinfleW;

hence, the resolved part of the whole pressure in the direction of the

line joining the centres of the particles, is
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2irl2hA / .
—— .dd = Q,* \/a* + P- 2al cosd

h
sin 0<7fl r/jg

vV + P - 2al cos
"

al
'

„ • 2irlhA re-aRdR{a
2 + l*- R2

)

- 1*^ /(«* + U - R2

)
e-« RdR,

the limits being R = a —
I, and R = a + I;

The attraction of the caloric is (16 and 17) very nearly,

4,ttMPA fl ni I al
1 aa a \ 4tt o/WP

« la
2 a a2

a J 3 a''

whilst the mutual repulsion of the two particles is —j-;

hence, the expression for the whole force of mutual attraction of the

particles towards each other, is

4>ttMPA [e~
al 1,1 a

]
M2

4>tt qPMP&m——s
) +- e-«i -~e-" a --e~aa

)
-— - — ^—

-,

—
a \ a2 a a a ) OT 3 a2

- *-¥ ft.^4) «-t -
(- 7 +^4)--i-

20. Here we have not taken into consideration the circumstance

that the mass of the particle will not be acted on exactly as if collected

at its centre of gravity. It has been supposed that it is so collected,

and that the caloric then extends to infinity, so that the attraction is

due to a quantity of caloric lying in a sphere about the attracting

particle at the distance of the attracted one. Now, in fact, nearly one

half the attracted particle will not be acted on so much by the laminse

beyond its surface, whilst the other portion is actually acted on by

particles beyond the laminae at the centre; but as the density of the
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former laminae is greater, and the part of the body on which it acts

less, we cannot have erred much in taking the mean as the correct

value of the attraction.

Indeed, if there be any error committed, it is obvious that we have

estimated the attraction too high ; both from the greater density being

that which we have supposed to have full agency, and from the fact,

that the actual attraction on parts lying at a distance from the centre,

is not in the direction of the line joining the centres of the particles.

It may then be conceived, that the above expression is rather too great

for the attraction, and it will appear presently that its value even as

I have given it, is negative.

iirPB
For we have already proved (14) that

,
— = M;

.-.
—

,
— (\+al)e-

al —J? = M (17);a o

hence

s =—7^r~ (1 + aa) e " ~^~ e t ° * (1 + aa)t

an essentially negative result.

21. We may however introduce a positive quantity into this ex-

pression, by conceiving each molecule as a compound one of two

different kinds of particles attracting each other, as we proceed to

shew.

M'
Let U'=^~,

then the action on a particle of caloric is

, (dU dU' dVP -T— +
dx dx dx

hence all the equations for motion are unaffected :

and Z> = 2—„— + 2—~— ,

|S Ae~« R 1? A'e-aR
'\

4ttP
V ~ *

\R
~

B + B " '

R ) «8 ;
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. M „ dD P (dU dU dV\
hence the equation, ,

=—
I —j— + -7 -j— 1

ClX C \ ClX (IX ClX /

gives 2^ (e~'
R + aRe~aR

) + 2^ («-««' + aRe~*R
')

c
2, lR3

+
B'3

a* \R>
+
R> AKe +aUe

- A'(e-°
R'

+ aRe-° R
)\~\ ,

hence M + M' = ——^-= .2
a

The expression for the attraction of a particle of the first substance

on one of the same kind, whose mutual distance is a, is

„ _ IttMPA
f(l +al)e-

al
(1 +aa)e-

aa
\

M*
a8

I a2
a' ~)~ IF

and a similar expression, only accenting the letters, is true for the

mutual attractions of the other similar particles; call it S' : also, since

M attracts M', if T be the attraction of M' in virtue of M, we shall

have

rr _^rPM'A i<J+al)e-"' (l+aa)e-
aa

\
MM'

1 ^ \ J
"

a* )
+ ~aT

_ 2*hA
e
_aa

|^Vyal +
1

j
g
_ae _ &c

J
f

T - *"PMA '

f(l+qf)g—
r

(l+aa)g-'"'l 3fJT
V \ a* a* J

+_^~

2ttA^' „ ifa + l + aal V
e
—

a*

Vol. VII. Pa»t I.

~{F^*a-'-<4
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hence, the whole mutual attraction of a compound particle is

S + ST + T + T

= ^J*{BM+B'M'-(l + aa)e-<"'{AM + A'M')}-
W-MJ

-^e-«
a
l\A + A'\{e-"

l

(a + l+aal + ±) - e*' l

.fa
- I - aal +

i)

+ e- al
'

(a + l')+ }].

Now for a single particle M = —
, and there is no reason to

suppose B different in other cases ; hence, the mutual attraction of the

compound particles is

i^' - ^(AM + A'M')(1 + aa)e-°°

-2mtf e
'
aa{A + A

'"> ^' al
' {a + l)+ - *

Now if they are at a distance from each other, the quantity e~ aa is

2 MM'
very small, and the force is

;

—
varying inversely as the square of

the distance, which is the known law of gravitation.

22. I shall not dwell longer on this point, as the difficulty is not

to obtain a portion of the expression which shall vary inversely as the

square of the distance; for this will be at once accomplished either by
the above method, or by supposing the attraction of M on P a little

greater than MP, as M. Mossotti has done, or by taking into the

calculation the caloric which is displaced by a particle, either by the one

attracting, or that acted on, which in accuracy ought to be done. But

the difficulty is to obtain an expression for the mutual action of two

particles, which shall express those facts of Boscovich's hypothesis

specified in the Introduction, and which are clearly essential to the

nature of a molecular action.

To accomplish this object, I have supposed all the particles repul-

sive; which hypothesis requires that the density of the caloric within
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the medium, be less than that without. I shall not attempt to justify

this hypothesis, or to prove that its apparent complexity, as compared
with the received one, affords a strong a priori argument against its

correctness. The only way to obtain final accuracy, is to subject to

rigid calculation any hypothesis which may suggest itself, and to retain

that which gives results consistent with facts. And should it be found

that a little difficulty attaches itself to the one in question, we may ex-

pect either that the difficulty itself will vanish, or the hypothesis will be

found unnecessary from after-attention to a more simple one. I may
state, that I have spent a considerable portion of time in trying other

hypotheses, but at present can find none which so apparently coincides

with known phenomena as that which I have just stated.

23. Let us then determine the conditions of equilibrium of a

system in which the atoms of caloric are repulsive to those of matter.

Assume the density of the external caloric to be q, and that of the

internal q',
so that by writing q

—
q for D, we may adapt some of our

previous investigations to this case.

where V has reference to every particle.

But p = \cq*\

dp , da'
' = co ——
dx * dx *

d£ = P fdU dV\
dx c \dx dx I

'

dD _ dq^ _ d£
' P fdU

+ dV\ + ety

dx
~
dx dx c \ dx dx) dx'

Now if there were no material particle, we should have

dx c dx '

where V
t

is the quantity which V becomes for a homogeneous medium

of density q\ if then we assume V
I -V=V; where V is the function

F2
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due to a mass of particles equal to those displaced by the repulsion,

and situated in the places from which they have been driven off; we
shall get

dD P (dU _ dV\
dx c \ dx dx

dx2
c \ dx2

dx' "-)•

P id2U d2
V'\

V

f l(TV' &'V d'V'\

dx^ '*"dy
T "*"W e \~dx

r +
~df

+
~dtf~)

;

d2D d2D d 2D P (d
2V d2V d2 V

and —r-5- + —r? +

, v d 2 V d2 V d2 V
,

_
,

but
-da?

+
df

+
dz2
=-^P<l>

d2

V, d2

V, d2 V
t

: _

d2

(V-V) d2 {V-V) d*{V-V) A h . k
•'

dx2 +
dy

2 + M ; =-^(?-g)>

d2V d2V d2 V' D_or iM +
iitf

+
-dir

= -^PD >

d2D d2D dTD 4ttP2

• •

rf*
2 +

rfy
2 +

d%
2
~

c
'"'

= a2D;
the solution of which equation is

Ae«R
.

R '

and, as in the former case, it evidently follows that

B Ae~ aR
\ 4ttP

\R R J
"

a
2

24. By employing a process precisely analogous to that in (13),

we obtain the value of V directly, taking into the account the caloric

displaced by the material particles ; the expression is

' ~
a

2 ^1 R R )
+

3
' ?n i'
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hence B = Ae~ al
{\ + al) + ^—

-£,
3

and we obtain also, as in (14),

%/r cB 4,irPB

,, ,.

"

,
a2

i)if a
2
/
3

?

4,rP r 3 )'

4>^AMPe- al
(l+al) = M*_^ 4>7rMl3

Pq
a2«8 «3 3 a2 '

which expressions will simplify that for the force of two material par-

ticles on each other, by striking out several identical terms.

7b find the mutual action of two particles of matter together with

the caloric surrounding them, on the hypothesis that matter is repulsive

towards caloric.

25. Since the caloric surrounding the particle A, whose action on

B we are about to estimate, is diminished by ^4's repulsion, the ex-

ternal mass will no longer produce an effect equal in all directions,

whose actual value is therefore zero ; but will exert a force on B
equivalent to the attraction of a mass similar, and similarly situated to

the mass displaced.

The set of forces, then, which act on B through the means of A, are

(i). The repulsion of A on B.

(2). The attraction of a mass of caloric equal to that displaced by
the volume of A.

(3). The attraction of a mass of caloric equal to that displaced by
the repulsion of A, and

(4). The pressure on the surface of B resolved in one direction

along the line joining the centres of A, B.

26. If a be the distance between the centres of A and B, the

M2

expression for their repulsion is —5- , which is the first force.
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4nrl3

27. The value of the second force is also
2 .qMP, calling the

exterior or mean density q.

28. To obtain the third force, we must divide the displaced caloric,

or rather a portion equal to it placed in a position directly opposite,

into two portions; the one containing all that is included in a sphere
whose centre is the centre of A, and radius the distance to that point
of B which is nearest to A ; the other, the portion arising from the

spherical shell included between two surfaces to radii equal to the

distances of the nearest and most distant point of B, from the centre

of A.

The former of these is easily found as in (16), equal to

4*MPA
,

(1 + ^ _ e
_ a(a_ t)

I3| + a {a _ l ^a2a L ' "

To obtain the latter, we will first omit the consideration of the

portion which would occupy the place of B, supposing that particle

removed, and consequently take no notice of the quantity which ought
to be displaced there; by this means, it is obvious that we shall estimate

the attraction a little too highly; and we shall see that the portion,

taken as we have supposed, is actually less than would be obtained by

conceiving the mass of B collected at its centre ; consequently the whole

attraction is considerably less than that given in (20). Now we saw

that the resultant action even on that calculation was essentially nega-

tive, it appears then that a more rigorous analysis increases rather than

diminishes the difficulty attendant on an attractive atmosphere of caloric.

29. Let us then proceed to the calculation.

The action of a mass of caloric in a spherical shell of thickness 8B,

whose radius is R on a similar portion of a shell of the body B at

radius p, is easily seen to be*

AMP 4nrR*$Be- aR , rfa . , . .. ''?<

v . ^ • UJ 2f sin dP d(
t>
cos 0) ;

* For the construction of the figure, &c. see the Note (a) at the end.
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of which the last factor

=
/(-^cos20 + C)

=
fa dp (1

- cos 2<p)
= irdp sin2

<p

= "\P- J i^y
dP}

+ 2(a
2 - P)(a + I - R)

+ <* +

%-* }]:

consequently the whole attraction is

AM^ V"

fdRe-
aR

\(a + l-R)R--^ («T7 a~^T . a + l-R)

-^ (a*-P)(a + l-R)R-
{a+^:

:R3

R}2ai v ' v ; 12a

-\\a2
)

a* + l* m R>R +
2«s " '

12<

AMP 4,**e-« R ((a*-ly 2 . 7W . . 72X (\+aR\

« +/:

/i?
2 2R 2\ 1 /jR

4 41F 12R* 24 J? 24\1
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AMP i^e—
V

*r*
[e

- a i i^jzll _ A. (a* + P) !+«(« + /)

a 2 + l
2

( 12 2a + 1 2\ 1 f——j* ia + l 12a + l

24 a + l 24\ 1

.
. tta*-l*y 2 ,. 73

. /1+ao^A

a* + l*( /2 2a-/ 2\ 1 / -

j4

2 V o a
2
/ 12 V

a* + Pf H 2a-/ 2\ 1
/• , 4 4a-/ 12a-/—- +-

24 a - I 24

The quantity under the bracket following e
-
"', becomes by addition

a*-2a2
l
2 + l

i a2 + l
2

, 2
2a 2 a 1 + aa , 72V

-. + s (a
2 +— + -

;
+ 2 . / + I

2

)4 2 a a 2 a '

1
( (

4 a3 12 a2 24 « 2 a

12 a a a a

/.
,

12a2 24a
,
24\ 7

/_
,

12a 12\ „

+ (ta + ^.P + l
4

}
- -V (a

3 + /
3

) (1 + aa + a/)
\ a) 5 3 a a v v

a4 a2

( , 2a 2\ 1 / , 4a3

.
12a2 24a 24\

4 2 \ a a2
/ 12 V a a

2
a a4

/

/l + aa 11+ ao\
„. (1 1 1 \ 74 2 , , 7,N ,_ 7,

\ a 3 o / \4 2 12/ 3a a v yv y
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2 «3 2« 2 /2 , 2« 2\ ,

2/l+«a\ 7
2. 2.

7
. /l+a«+a/\

2
, ,

a3 3« 3 /, 3« 3\ /l+a«\ 7_ _,

3 a a a V a a3
/ \ a /

2 .
, 7„. (1 +aa + al\

„| (tf
, + £ + c/ +^/3 + /<)

-
§(«

3 + /
3

)
(

1 + a« +tt*

)
,

if we denote «3

j- r by C.
a2

a'

By the substitution of this value and the corresponding value of

the coefficient of eal, the attraction becomes

AM
?yr"- («-' (« + - * « — p + 1

1

)3 Fa« 2

I

v
a a y

_ e+ai («i + £ _ ci - 1-h^ /
3 + /')

a a

, . 7N ll + a(l + al , 1+aa—al A 1-
(a

3 + /') ( <?-
a '

<?
a/

] |
.

30. I proceed next to find the value of the term omitted, by taking

the mass of displaced caloric between limits involving B itself. It is

obvious, that we have calculated the attraction of a mass which does

not exist, and shall have to subtract the value which we obtain in

order to get the correct attraction.

Now we have to estimate the resolved part, along the line joining

the centres of the molecules, of the attraction of a mass of fluid of

variable density on the different parts of a solid conceived to occupy
the same space with itself.

If we take any element P of the fluid, and estimate its attraction

on the whole solid, the result will obviously be the attraction of the

solid on this element.

Vol. VII. Part I. G
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Let p be the distance of an element from the centre of the particle

B, and retain the remaining notation of the last problem, then will be

the volume of an elementary annulus

= 2irp
2

dp d6 sin 9,

and the mass attracting this, is

I
3 '

consequently the resolved part of the attraction in the required direc-

tion,

-M£ „ . , ,„ • „ n PA.er« r

y
rrMo3

=
ffjr^--

2 *P
2 dP de sin OcosO

2ttAMP rr P*e-<" .=
js / /

' sin 9 cos 9 dO dp.

Now r"- = «2 + p
- 2ap cos 9 ;

.•. rdr = ap sin 9 d9,

and the attraction

ZirAMP
a I

3 ffe-
ar

p* cos dr dp

=
75 JJ e

~
P a

— dr dPal3 JJ '

Zap
r

= -

g,f ffe—
r

P («
2 + P

~
f)

dr dP

ttAMP
at a \a a a I

the limits being r = a + p, and r = a — p

ttAMP r , la* + p
2

. , la-p 1a-p 8\ , A

a V a a2 a3
/ J
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r
i , f«' + /o

2

„„ {(f-Qao + p
2 2a- p 2\

a V a a a / J

2,*APMe- aa
ri , [lap a a 1\

,

+ (T + 5 + ? +
?)

e
"i

- !=4
s^[{e*>j-(?-**5)-e-

+
7)-e-j)}'-

M(H)-(^ +3)*H)-H)M
+ c

_ ZirAMPe-™ rf l + aa /£ _ 2/ 2\ l+a« // _ l\ I
a/

0*7" L{ a2 U a8+ a3
j «3 U a')}*

which must be subtracted from the expression above, in order to give
that part of the total action designated by (3).

31. With respect to the fourth part of the total action, it is evi-

dent that it differs from the expression already obtained on the pre-

vious hypothesis (19) only in sign. Its value is, therefore,

^5^(1 + aa)e— {(l+al)e-°
l - (l-al)e«

l

\,

or in the approximate form

4>irhAe- aa

3 c?a?

G 2

(l+a«)a
2
/
3

.
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32. By collecting all the terms together, we obtain as the total

action of two particles of matter surrounded by atmospheres of re-

pulsive caloric, estimated in the direction of the line joining their

centres, and supposed of an attractive character,

M* IvP qMP

+ 4nrMRd[_ aI (1+a /)
_ c-«(.-0(l +a ^Z7 )

J

2irAMPe~ aa
( ... C ni 1+art

+ ^ \ e
~ W + — + CI+ P + r)aa I* [a a

- e+° l

(a
4 + - - CI -±±^l3 + I*)a a

_
(«. + P) (Lt££±iJ er-' -

1 + a

;~
a/

«•')}

2,TrAMPe- aa
„

'

f/ rt
3/ 3\ . /„ 3/ 3\ ,1

a '

But we have seen (24) that

4irP(l+al)Ae- al ,, 4tt/j _
^ =M-— Pq;

hence the first line is destroyed by the first term in the second, and

we get

„ AMP2-we- aa r 2ea '
.S = =

——
\l + a(a-l)\a a2 L a n

e'"'i^ \ (
a3 3 \ ( . o 1+ ««\ 7 l+"« ,, J+

^-|(l
+a

a).(---j
+ ^-3-^-)./ + -T-.^ +

ZJ

-_|(l
+
a«).(-- a4)-(^-3^-)./--—-./. +

/«|
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(a
3 + P) (1 + aa + al . 1+aa-al A—Hi—:

— "
;
—

••")

an expression which involves e~ aa as a factor, and which is conse-

quently of an entirely molecular nature.

The ahove expression may be put into the following form :

S = 5 [2le
al

a a L

x ,
2eal aV-3 , ,

,N 8(«-«'+e" J

) 1 , ;+ (l+a«).{-_ + __(*-'_<>««)-- -A* ^+-(«-' + ««0

a3 + Z
3

AMP2Tre- aa
i, , .. (a? + l

3
a? + 1

3

\\

+ &c.

a
. //r'o3— 3

+
AMP2ire-aa „ ( , , ,N /a

3a3-3
,

1 «3 + f
a«" ' tv y

V a /
3 a a/3

AMP 2Tre- aa ^ ... , .. /«3a3 a3

a*J*\ ~»,

AMP2-n-e- aa „ , (e~ al —e al

{p—al

pal 1

j-L-+Qah\
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= -33 (1 + ««)
a 0!

|>/p
(1+a/e 1-aZe }

—
i

—
V

which is a very simple form, and is perfectly general, with the only

exception, that we have omitted all consideration of the caloric displaced

by the material particles between A and B.

33. In order to complete the expression, all that remains to be

done is to find the value of Je or h.

Now h evidently varies as the force on an individual particle of

caloric at the surface of a. material particle.

The expression parallel t;o x for this force is then

This may be divided into two parts, the one that which depends on the

particle of matter at whose surface the force is supposed to act, the other

the united effect of all the other particles. With respect to the latter, it

is easy to observe that the force at the centre of the molecule is

zero, and consequently that at the surface will be the variation of the

whole force by the variation of X through the space I.

Let, therefore, F be the whole force in one direction on a particle

of caloric in the position of the centre of the particle of matter; then

2dF
will , / be the term in question.

34. We have therefore to find

V^e-""(l
+ aR) = G.

Let the whole mass be intersected by planes at the distances re-

spectively of the particles, and parallel to yz : e the distance between

two consecutive particles : >) the distance of the particle acted on from

the first plane, »? + re is the distance of any plane.
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Let the plane be divided into annuli of which the radius drawn
from the line of intersection with the axis of x is

p, then

2tto^p m + re „ -„ _.

a^ijj-«-*(i + «jB)

is the part of G for this annulus
;

.-. part for plane = ?£ C PdP (,,
+ r e ) e

«* i
1
t"-*?

- -r / dB(r, + re) e~aR i =;—'

_ 27r(i; + re)<?-
C+ re >

e
tj + re

— ~JL *-aln+re)

Hence, G =
-^<?-

a"2°V

2tt <?-°»

and F = - H
6
2

(l-e" ae
)

"
dr,

~

7(1^ e~ ae
)

'

so that the term in question is

e
£

(l-C"««)
<r

The other part of//, is iHJ^*-«'L+f^
a e*

If, however, it were required to find the value of h for a particle
not far from the surface of the medium, it would be necessary that
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we should know the law of variation of density at the surface. For

the sake of obtaining the former, let the density be supposed uniform,

Le~ a€

then instead of -5-7= ^ the term will become
e

l

(1
- e~ ae

)

T /»-"« 7? T

e
2

(l-<r") e
2 ^^

«*(l,-*-««)
{l re h

the particle being distant by pe from the surface:

by substituting this expression, the force of attraction becomes

„ 4>vAMPe- aa
(l + aa) ri „ T l—re—'*),, i-n-PP .

lS = - ~^r ~l\
K - L

eHl - e-n)
( ~3W q)

~T~ J
"

This is a very simple expression for the mutual action of two

particles of matter. As e diminishes, the attractive part of the force

diminishes, so that there is a resistance to the approach of the particles

toAvards each other.

Suppose a particle situated at or near the confines of the medium

to be in equilibrium : then the sum of all expressions similar to the

above, taken throughout the medium must equal zero.

35. I shall only very approximately find the action on a particle

bounding a medium : for it is obvious that in general the force on

it from the surrounding caloric will differ widely from the force on

a particle in the interior of the medium ;
the former depending only

on the particles on one side of that in question, the latter depending
on two sets of particles acting in opposite directions, and tending to

counteract each other's efforts. On this account there will in general

be a rapid diminution of density towards the surface of the medium.

The law of this diminution I have attempted to investigate, but from

the circumstance that the resulting equations involve the mixed dif-

ferences of discontinuous functions, I have not hitherto arrived at any

satisfactory conclusion. I shall therefore satisfy myself with finding the

force on a particle bounding a medium, on the supposition that the

medium is homogeneous.
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The expression for the attraction of any particle, is of the form

r.. gfl-»6
a*

•

Now whatever be the form of the bounding surface, it is obvious

that unless the sphere of sensible action be great, it will suffice to

consider it plane and extending to infinity : we shall then have to

estimate the aggregate force on a particle resolved perpendicular to

the bounding plane.

Let the atom under consideration be the centre of a spherical sur-

face to radius a : take an annulus of this surface such that the radius

vector drawn to it makes the angle 9 with the bounding plane:

the area of this annulus = 27ra2 cos 9 dO,

and the number of particles in it = —— cos 9 d9
;

hence the attraction on the particle in question resolved perpendicularly

to the bounding plane,

27ras sin 9 cos 9 d9 e~ aa

2
e

{Ha — m),

and the whole force due to the particles in the hemispherical surface, is

ITHa _•' 7T

S "
2

6 6

aa—-. me~ aa

In order to find the whole attraction on the given particle, we

must find the sum of all similar expressions taken through the whole

mass : which is

n-H , o v
irme- a °

=
-f^ «<r°'(l + 2*— + «r + ")-

e*(i- e-'»)

e
.

\l-e- ae
) e

2 l-e" ae
*

This is the expression which ought to remain constant, whatever

be e, so long as the temperature is so. It is obvious that it varies

directly as H, which involves m' — n'q.

Vol. VII. Pabt I. H
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Moreover the density of the caloric at any point

wA e~ ae

~ q
6 (1

-
<?-<")*

We see, then, that the density of caloric is not a proper measure

of the temperature, although if e be small, the variation of density

will be a proper measure of that of the temperature ; each depending
c~ ae

on ——
, or on the density of the material particles, which result I

e

obtained in a popular manner in my Theory of Heat, p. 166, and

found some remarkable consequences to accrue from it.

36. From the expression for the force, it follows directly that

if q increase, which it must do if the temperature be increased in

whatever way that increase be measured, the attractive force diminishes,

but this diminution will also be accompanied by a diminution of the

repulsive force provided a increase, and that too, not by the variation of

the common factor e~aa - —-^
, but by the diminution of -=7=

—-
.

a2 * • (1
— e

)

Hence, we perceive that the same series of particles will by an increase

in their mutual distances, exert actions on any one particle just

sufficient to retain it in equilibrium, notwithstanding that the quantity

of caloric has been increased. This fully explains the necessity of ex-

pansion by heat.

37. It was my original intention in drawing up the present Memoir,

to have extended the investigations to a set of combinations of particles,

such as I have supposed to unite in the formation of crystals in my
Theory" of Heat, p. 174, but the subject is so extensive, that I am at

present obliged to postpone it for want of time. I will only make

one remark on the subject, which is this, that if in a binary combi-

nation the lines joining the centres of each pair of particles are

parallel to one another, it is obvious, that the attractive force on a
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particle estimated in the direction of this line, will be different from

the force in a plane perpendicular to it, not only in value, but also in

form.

For the supposition of contact between the material particles amounts

to that of exclusion of caloric particles, and consequently we cannot

estimate the action of each particle on every other, as though these

two were the only ones of the system, but must add or subtract from

that action a force due to the caloric displaced at the point of junction ;

and further, the repulsion of the caloric surrounding a particle, must

be diminished in the direction of the line joining the centres, on ac-

count of the quantity displaced by the neighbouring particle. The two

sets of forces will therefore be totally different in form in the two

directions. In that joining the centres of the particles, the variation

of the attraction for a variation of q as well as for a variation of a,

will be very considerable, whereas in a perpendicular direction both

variations will be small. But besides this, it will be seen that the

M* — qMP
term which in Art. 29. completely destroyed g , being

a term arising from the displaced caloric, will not now be sufficient

to destroy it on account of the accompanying particle, consequently

a very small attraction varying inversely as the square of the distance

will remain. This attraction cannot have a sensible value as compared
with the other terms when the distance is small; but when the distance

is finite, the rapid diminution of e~ aa renders the other terms very

much smaller than this, and at a considerable distance this term is the

only one sensible : at such distances then, the force varies inversely as

the square of the distance. Thus all the known laws, as well of at-

traction as of cohesion, are explained by the Newtonian hypothesis.

Queens' College,

March 10, 1838.

Note (a). Let A be the centre of the attracting, B of the attracted particle AB = a,

AQ =
p, AC=R the radius of any sphere, V= the volume of B =— angle QAM=<j>.

3

H2





III. On Rolling Curves. By Hamnett Holditch, M.A., Fellow of

Cuius College, and of the Cambridge Philosophical Society.

[Read December 10, 1838.]

In the fifth volume of the Acta Petropolitana, Euler referred to

a class of curves which, when caused to turn round fixed centres,

possessed the property of communicating motion to each other without

friction ;
he deduced also their characteristic property, that the point of

contact remains always in the straight line joining their centres: he has

not however followed out the investigation so as to furnish actual forms

of curves, neither has this been done by any other writer that I am
aware of, and consequently no method exists by which such curves

can be obtained. But as they are practically employed in a manner

which I shall proceed to explain, and commonly found by a tentative

process, it appeared worth while to search for forms and rules for their

construction, independently of the analytical interest that may be sup-

posed to attach to such investigation.

Let Anm, Bn
i
m

l (Fig. 1.) be two curves capable of rolling together,

and having their centres of rotation A and B fixed at a distance equal

to the sum of their apsidal distances, Am being a long and Bn
t
a short

apsidal distance, then if nAm be caused to turn round in the direction

of the arrow, it will press against Bnmt
and communicate a rotation to

it. This action will, however, cease when the point m has reached « ;

for beyond that point the radii of mAn will diminish, and its circum-

ference begin to recede from the other curve.
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No continuous motion of B can therefore be derived from that of

A, if they be continuous curves, unless their outlines be treated like the

pitch lines of ordinary wheels, and be indented with small teeth at

regular distances; these teeth, as in the usual forms, projecting nearly

as far beyond the pitched line or circumference as they extend within

it. If this be done, it will be found that the circumference of A will

retain its hold on that of B in all positions, as well on the receding

as on the advancing sides of the curve. A continuous uniform rotation

of one curve will produce a rotation of the other, not uniform, but

continually varying in its angular velocity, as the ratio of the radius

of A to that of B; this becomes then a commodious contrivance for

converting an equable angular velocity into an unequal one, and is

sometimes so used by Mechanists. Fergusson's well-known Cometarium

was constructed on this principle: it is to be found in use in some

silk machinery, where it is introduced for the purpose of correcting the

unequal action of the common excentric in laying the silk upon the

bobbins; it has also been used by Messrs Bacon and Donkin, in their

printing machinery. I am informed by Professor Willis, who drew my
attention to the subject of these curves, and furnished me with the

above practical information, that the copious collections of Messrs Lanz

and Betancourt, and that of Borgnis, furnish no example of the appli-

cation of rolling curves to the purposes of machinery ; which may there-

fore be considered to have been unknown to them.

When two such curves roll on each other, let r be the distance of

their point of contact from the centre of rotation of the first curve,

and the angle made by r with a fixed radius; then -r— is the tan-

gent of the angle the curve makes with r\ and r
t
and 0, being corre-

sponding quantities in the second curve, ^—l is the tangent of the

angle it makes with r
t , and as r and r

t
are in the same straight line,

and the curves must have a common tangent at the point of contact,

these two angles must be equal, and

rd9 rd6
i

'-' dr
' '

dr.'
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Also, if c be the distance of the centres, r + r,
=

c, and

... dr* + r*d<? = df
(l

+ ^) = drj
(l

+ ^*)
- drf + r •*,•.

or the differentials of the lengths of those parts of the curves which

have been in contact are equal, and

, rde rde,
.-. r + r= c, and -*— = -3—-

,

are equations which contain the analytical conditions of such curves.

We will first consider the case of two equal and similar curves

rolling on each other. Since -j- is some function of r, *%-* must also

be a function of r, let it = fir) ;
and as r, and 0, belong to a point in

a similar and equal curve,

••• -^r =/CO; and r,
= c - r; .: f(r) =f(c -

r),

the solution of which equation is f(r) = <j> (r, c — r); any symmetric
function of r and c — r, and if any form be given to

<j>
in the

equation —7— = <p(r, c -
r), the integration of the latter will give the

equation to a curve having the proposed property. If we suppose it

to have greater and less apsidal distances a and b, which most curves

which can practically be used, must possess ; then, as in revolving the

greater apsidal distance of one must come into contact with the less

apsidal distance of the other, a + b = c
;

Now (a
-

r) . (r
-

b)
= (a + b) . r - r* — ab = r . (c

-
r)

- ab, is a

dr
ddsymmetric function of r and c — r ; and as at apses -73

= 0, if we

rd6 X(r, c — r) , __. N . . .

assume -7— = ,

v y
,

where X(r, c -
r) is any symmetric

dr V(a —
r).{r

—
b)

function of r and c — r which is not divisible by \/(a — r) . (r — b),

the curve will be confined between the apsidal distances; and sup-

posing also, that X contains only positive integral powers of r and

c — r, this last equation can always be integrated in finite terms.
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If r - - = x, any component part of X as
s

=(i-r"(i-n(i-)" + (i-n

=s--r-{(i)"--
iii-(r-^ }•

consists of even powers of x only, and therefore X will contain no

negative powers of x, and will be of the form

a + b\
2

X(r, c -r) = k
l
+ k(r-

°
L

^-) +

and limiting the investigation, for the sake of simplicity, to the first

two terms,

k
t
+ k.{r- t±Jj

we have dO = . . dr.
ry/{a —

r) . (r
—

o)

To integrate this, let —-— m a,
—-— =

/3 ;

•. (a - r) . (r
-

b)
= (a + b) . r - r2 - ab = 2ar - r* - a

4 + /3
s = p -

(r
-

a)
2
;

/V/3* _
(/•
-

a)
s

, A + £)3*cos*d> , ,

Assume r — a = /3 cos d>, then a0 = ' ^ :r^ • a<Pr r a + p COS

£, + £ . (a + /3 COS —
a)

2
-.

a + y3 COS (p

' ™

=
'—p: . d<t> + kadcb — kfi cos <bd<b.

a + ft COS
(p

T T T T
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Now
/ r^- (See Professor Peacock's Examples)'J a + /3 COS

<p
s r '

= . . tan '

y
- —

Va* - F Va* - &

- -4=. tan- fV?. tan <) ,

and tan ? from the equation
2

« + 6 a - i ,
. , , fa— r

r — —r— = —-—
. cos is round to be = V r>

2 2 r r — b

n i i (« + *)*
g*, + *- 5 n ,

9 = t== .tan" 1 V-- V* - r
+ a£rf> - A/3 sin + C

V«6 « r — b

**.+*. k±^'
2

tan- \/?- VPIV«J a r - b

- h y/(a -r).(r -
b) + k.(a + b). tan" 1 \J

tt^L + Q

2k, + k

r-b

{a + by

or 6 =
' „ 2

.tan- s/\. sj
r-^±

y/ab b a — r

- k.\f(a- r).(r -
b)

- k . (a + *).tan-\A
h-

, (1),a — r

where 6 is measured from the smaller apse, is the equation to a class

of curves, which for the present may be called self-rolling curves.

If *,
= Vab, and k = 0, = 2. tan-V? . \/

r-^
;b a — r

Vol. VII. Part I. I
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,
ab 2ab ,.and r = n = - rr rr the equation to an

2
v , .

, fa + b) + (a -
b) . cos ?

a cos8 - + b sin
2 - v J v J

2 2

ellipse round the focus, which is known to be capable of rolling upon
another equal and similar ellipse.

Hence 9 = ^% . tan"
1

\/j • \Z
r-^

Vab b a — r

is the equation to the curve constructed in the ninth section of

Newton's Principia, which is therefore a self-rolling curve.

In the equation found above, if r = b,

n I 2k, k.(a + by . . .J

so that the minor apsidal distances recur, the angular distances between

them being = \—^= + la + / - k Ja+ b)\ .tt.

Wab 2y/ab
K

j

If r = a,

and the major apsidal distances recur and bisect the angles between

the minor distances: and if that portion of the curve between two

minor distances, including as they do, a major distance between them,

be called a Lobe, the number of lobes in a revolution

f 2k, k.ia + by . , ,J

Wab 2<Vab )

and in order that the curve may return into itself and so be capable

of successive revolutions, this must be an integer
= n ;
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, 2& k . (a + by , . ,, 2

and the equation to a self-rolling curve of n lobes is

G = /? + A . (« + b)\ . tan- 1 \Tf . V^
\n J be'r-ba — r

- ks/(a-r).(r- b) -k.(a + 6).tan-'V- *,
a — r (3),

where the constants a, b, n, k may be assumed at pleasure, and for any
value of /•, the corresponding value of 9 will be obtained, and the

curve may then be traced by points.

The different forms the curves may assume will be best illustrated

by an example; thus if a = 10, and 6=1, and k = 114, then if

r = 1,
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If n = 1 the curve is. of one lobe, and if also k2
= it is an ellipse ;

and examples are given when h%
= 2, 4, 10 and 20 in figures 2, 3, 4, 5,

C being the fixed centre; if k2
= —

2,
—

4,
—

6,
— 15, — 20, the repre-

sentations are given in figures 6, 7, 8, 9, 10, in all which figures, only

the upper half of the lobe is drawn, as the lower is similar and equal

to it : and although in some of the figures the radius vector has swept
over more than half a circumference, it has returned so that the semi-

lobe has terminated when 9 — *.

If n = 2, 3, 4, &c, curves of 2, 3, 4, &c, lobes may be traced from

the above table, and are readily laid down.

If a = 16.95, and b = 6.95, the following is another table for a great

variety of self-rolling curves:

When r - b 1,
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and an hour is sufficient to make a table for any assumed apsidal dis-

tances. It will be seen that if k be positive, as k increases, the curves

bulge at the greater apse ;
if k be negative and increases, the curves

bulge more and more at the lower apse ;
this will afterwards appear

from the consideration of the radius of curvature.

Fig. (25) is an example of a two-lobed curve.

In some cases, as in figures 8, 9, 10, the semilobe commences at the

minor apse by a retrograde motion of the radius vector, and terminates

in such cases by a retrograde motion at the major apse: for let A be

the value of near the smaller apse when r = b + as, and B the value of

ir — 6 near the major apse when r = a — as,
as being a very small quan-

tity, then we get from the equation to the curve ;

and therefore if k be positive, A and B are positive ;
and if k be nega-

A a
tive, A and B will be both positive, or both negative ;

for ^ = t » so that

if a portion of the upper semilobe is below the axis at one apse, there

will also be a portion below at the other apse.

As k increases the curves run into hooks, the points of which have

a tangent passing through the centre, and there can only be two in

/ a + b\
2

each semilobe determined from the equation k
t
+ k. (r —

J

= 0, for

d9
at these tangent points

— = 0, and this equation has only two roots, the

sum of which is a + b and therefore in rolling they come into contact.

If the value of k
t
from equation (2) be substituted in this last, the

distances of the tangential points from the centre are

*±* ± \/ _ y^> + E±3 . (j-a
- Vby. (5).
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If k be positive, there are no tangential points unless k is equal to,

or greater than,

4s\/ab

n(a + b). (\/a - \Zbf
'

they begin at r m —-—
, and as k increases, one moves nearer to, and

the other farther from the centre; and when k is infinite,

a + b y/a + b . r- /Ts •

g- ± —
(y/a

-
s/b).

r =

If k be negative, the values of r in equation (5) must be within the

limits of the curve, and therefore there are no tangent points unless

2
k > — jr— , and if k be infinite their distances are the same as

n yv a — y/of
when k is positive : comparing this condition with equation (4) it will

be seen that when k is negative and the curve is retrograde at the apses,

there are always tangent points.

Other forms of self-rolling curves may be found, as

and 9 = A .hyp log r + Bar + (C«
2 - B) .

- - ^'. r 1 +— ,

2 3 4

the latter including the logarithmic spiral.

Fig. 22 is a self-rolling curve, where the minor apsidal distance

vanishes, and rolls round the point C in its circumference.

We will now proceed to the consideration of rolling curves when

they are not necessarily similar and equal to each other. If c be the

distance of their centres, and -=— =f(r) be the differential equation of

one of the curves, and r
t
and 6

/ belong to a curve that will roll with

the former, then, since

rdO r
td6, .^. „

,^ = i^' and^>=^c - r) '
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it follows from what has been observed before, that

r.d 9
'

.

will be the differential equation of the latter; and any form being given

to f, the integration of these equations will be the equations to a pair

of rolling curves; and for other values of c, other curves may be found,

and so a system formed.

The equation to one of the curves being assumed to be that which

has been found for self-rolling curves, viz.

It + k [rrdd '

\ 2

dr
'

y/(a
- r

)
. (r

-
b)

the equation to the other will therefore be

r'de.
*, + *-(«-',-nr)

dr,

"

y/(a - c + r[) . (c
- r

t

-
b)

'

let c — b =
a,, and c — a = b\ ; .*. a,— b,= a —

b,

, a + b a + b,

.
rM ^'-(H3

---)' '.+ '•(--'4^'
dr, n/(ut

-. r).{rt -b) Via,- r
t).(r,-bt)

which is of the same form as the differential equation of the assumed

curve, and therefore if n, be the number of its lobes,

,,-g +*.(..+*,)}.
<»- V|.VJ£*

- *V(a,- r).(r,-b)-k.(al+b).tzrr\ V^rf.a, - r.
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is the equation to a curve which will roll with the former, the equa-

tions of condition being « — b
t

= a — b,

,111c, k (a, + 6,)* , . ,. 2

Hence, if h, k
t
and a — b be any assumed constant quantities, the

values of a and b may be found for n = 1, 2, 3, &c. from the equation

2£, h (a + b)°- t
. -,,2

Vah
r
2- ^ '

r

"»
by the solution of a cubic equation, as will be easily seen, and the

curves constructed from the equation

9 - (• + *.<«'+ 4] • tan- V?. V^H?
[n ') b a —r

- k s/(a -r).(r -
b)
- k . (a + b) . tan" 1 \J

r
-^-,
ct — r

and a system of wheels or curves thus found will roll together in pairs

or in any combinations.

When there are tangential points in one wheel, there will be corre-

sponding ones in all of the same system, and in rolling they will come

into contact with each other; for those of one wheel are found by mak-

ing f{r) = 0, and if a be a root of this equation, c — a, or a will be

a root of the equation f{c -
r)
— 0, or of f{r) = 0, and .*. a +

ft/
= c.

Forms of wheels are readily found from assumed values of & and k
t

:

or if the dimensions of a pair of wheels be assumed, k and k
t may be

found from equation (2) ;

Thus, if n = 1, b = 11 __ . ,,, _,. ., „.

n = 3, b = 5)
a = 10 > and ", = 1^ *+m

rf

1 2 », \Z l)
a = 10 ' and •• a

'
= 13

^-
Fi^- (12 )-

" "

i'; J I J}«
= 10, and ... a

4
- 13}. Fig. (13);

in all which cases each curve is also a self-rolling curve.
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In this latter example, it will be observed, that the curves are re-

trograde at the apses, which will be the case with all unequal curves

that are made to roll together, if they have the same number of lobes
;

or
'
+ ' vi/ r y^,.(v^

-
\Zb,y

-
s ~a~b. (Va - \Zby

from equations (2), and if n = « , this expression may be proved to be

negative when a and #,, and therefore b and b/} are unequal: and since

and
~*HVa,-^,r=^.{k,

+
k.(H^));

therefore, by equations (4), the curves are retrograde at the apses.

If two curves roll one within the other round fixed centres whose

distance is c, then

h h (
a + by

. rd9 r,det
, .„ rd9 «< + *'\

r -

2 )
r = r + c, and —t— =

-~j
—*

, and it —>— = —
,

,
_— ,

' - '
rfr dr, dr y/{a-r).(r-b)

be taken for the differential equation of one ;

a + b\

rde
t

iil a + by&
t
+
k.[r, ± c —J

dr, *S(a -r/
+ c).{rl ±c-b)'

will be that of the other;

let a + c = a, ; and b + c = b, ;

, a + b _ «, + b,
... « _ J) = a

7

- 6 , and —— + c = —^— ;

and'-*. *,**-{4M ^
»•.('.-^

<*r, </(«,
_

r) . (r,
-
b) V{a, - r,) . (r,

- b)
'

Vot. VII. Paet I. K
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and therefore, the equations will be the same as for those that roll

externally, and the equations of condition are also the same, and con-

sequently all curves (whose equations are of the forms that have been

considered) that roll externally, are also capable of rolling on each other

internally; in the latter case, the major axes come into contact;

a + b a+ b,
for if r,

= a,, r = r
i ±c = a,±c = a

i
+ — '—t

a — b a + b a - b a + b ,.„ , ,= 3 t + = —
(-
—-— = a : and if r = b

, r = b.
2 2 2 2

u

The curves in fig. (13) will therefore roll in the positions, figs. (14)

and (15), which are two different attitudes of the curves.

It will be necessary hereafter to know the radii of curvature at

different points of the curve;

Let
rd9 tet-ksnSl
dr

"
*/(u-r).{r-b) \7Y \Zl-s*'

where s is the sine of the angle between the curve and radius vector,

then p m sr, p being the perpendicular upon the tangent ;

dp _
s ds

rdr r dr '

1 X
? .** X* ;

therefore, to find the radius of curvature at the tangent points where

* = 0, and X = 0,

ds Y dX
s*dr X3

'

dr
'

ds_ *_ YdX
dr

~ Xs
'

dr '

x*

- x*+r- r-
ds dX
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and
d
^=2k.{r- ~^j =2k.\/^ when X = 0;

also Y — (a
—

r) . (r
—

b)
= — —

[r —J = — +
-^

where 1= a — b;

therefore, if R = radius of curvature at the tangent points,

1 dp ds 2k y/ — k
t

+ k
R rdr dr / /«'V *, 4

which depends only on a — b, and therefore, the radius of curvature is

the same at all tangent points of curves of the same system.

At apses, Y = 0, and s = 1 ;

2ds 1 dY
s>dr X*dr'

l_
as i , , _ . i .„

d>
=
-2X-*' {a + b -

2r) = „f, ,JV ' lf r = fl '

and =
5 7^ ' if r = *•

Let Ra represent the radius of curvature, when r = a ;

«?.? 1

R. r dr a
2

(*,
+
*i)

Tf
~

h I /2\ 2
*

'

)"

Hence also the following equations:1111
/J,,

+ Rb

==
«
+

b
'
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1111
R

at

+ Rb,
a
+

f;

Ra/ Rb a,

+
b>

JL _L I I
Ra

+ R
hl

-
a
+

b,

. , 1 s
,
ds

Also, as y» - +tt»

,1 s ds s ds
#

'*• Rr

+
Rr,

~
r
+

r,

'

Ify(^) De the radius of curvature of a curve at a tangent point;

the radii of curvature when r becomes r + h, are

R=f(r + h)=f(r)+f'(r).h,

and, the corresponding radii of curvature of another curve rolling with

the former, are

R, = <i>(ri ±h) = <t>{r)±V{r).h

=
<p{r) + <p

x

(c
— r).h;

also, since the radii of curvature of the two curves at the tangent points

are equal

/(r)«*<r,);

and therefore R - R
t
= + \f

x

{r)
-

<f>

l

{c
-

r)}.h.

Hence, if R > R
t

before the tangent points come into contact,

R < R, afterwards, and consequently the curves cross and change their

rolling sides at the tangent points: except h
t
= 0, when there is a point

of contrary flexure at the tangent points, which then also coincide at

the mean distance.
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a + b ds ., ,

If r = — = o. or the curve makes a maximum or minimum
2 dr

angle with the radius vector at the mean distance; and the reciprocal

of the radius of curvature

k.

The area of a wheel may be found: for the area of a lobe is the

integral from = — - to = - of

•«-
{*,+

*. (^)". -»•}. '(S±*
SeJ; sin

*) .**,

, . , a + 6 , , a + J
/ , N2which = —-—

. * 7r + « .
-

=-g . (a — o) . 7T
;

2 lb

therefore, the area of a wheel

a + b , , a + b . ..,= ——— k.rnr + k . -73- .{a -
b) . nir,

2 lo

in which expression, if the value of k, be substituted from the equation

2k
t

, (a + bf i . .. 2
—=*= + k .

-—7== - k . {a + b) = -
,

y/ab 2Vab
' *

the area of a wheel

= - .{a + b) .Vab + ~- . {4, .(a + b)Wa~b - 2. (a + bf + (a + b) .(a- b)'\,

= *-
. (a + b) .y/ab +^ . (a + b) . { (a

- by - 2 . (a + V) . (y/a - y/b)*} ,

=
^.(a

+ b)Val + ^.(a + b).(\/a-v/by.K^ + Vby-2:(a + b)},

(y/a - y/b\
4

=
^.(a + b).\/ab — Jenir .(a + b) . I

j
.
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Those systems of curves where k = 0, have no tangential points ; for

dd = i

dr
~

^/{a - r).(r
-

b)
'

and therefore cannot vanish.

If k
t

= 0, there is always a tangential point in the middle of each

half-lobe.

The former deserve a more particular consideration, as being in

general more simple in form, and admitting of easy and elegant con-

struction: if a„, bn be the major and minor apsidal distances of a wheel

of n lobes, the equations of condition (2) are reduced to «„ — bx = con-

stant = I,

k, 1
and

\/^JB »'

and therefore, an
= - + \/n2ki

l + -
,2 V - ( T|:

I / P
and bn

= - - + V n*k? + -,

and the equation to a curve of n lobes will then be

9 = -
. tan

"

r~ p iV n*k? +
- + -

nk,
' V

2n*k
or, r =

r +
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for EF = EO - FO = - l
- + \/n

2

k? + -
A
= b„,

2 4

and EG = EO+ OG= l- + \/n*k* + - = a„.

C)

Examples : if k* = -, and n = 1, 3, 4 &c, the figures (17), (18), (19),

will roll together, or in pairs, and are also
self-rolling curves.

The point of contrary flexure, when there is one, is always nearer

to the centre than the mean distance: for if p be the perpendicular
on the tangent from the centre,

rdd _ k
t _ p

~fo
~
V(a-r).(r-b)

~
V^?' "* * dp = °'

r =
»2 - 1 2ab

n°
——r ; also since (a

-
bf is positive,

2ab a + b
<,

a + b '2
»s — 1

and —-j
— is an improper fraction

;

a + b
'• r < —7T~

2

Since r — b, which must be positive,

=
-5-7 jt . (n*l — 2a),» . (o + b)

v J '

there is no point of contrary flexure, unless n*l - 2a is positive.

The outline of the lobes may be traced without the use of

logarithms by observing, since the equation in this case is

2ab
r =

a + b + (a
- b).cosn9'
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that if nO = 0, r = J,

4\/2. abIT

12'
'"

«.(2v/2 + VS + 1) + ft. (2^2 - v^ -
1)'

2tt 4aft
/* =

12
'

~

2.(a + ft)
+ (o

—
ft) Vs'

2\/2.«ft>7T
r =

12
'

'

« . (i + v'a) + ft . (\/2
-

l)
'

4nr 4aft
r =

12
' 3« + ft'

5tt 4\/2.aft
r =

12'
"

0.(2^2 + \/3 - 1) + ft. (2\/2 + 1 -VV
6tt 2aft

/• =
12

' « + ft'

7tt 4\/2.aft
r =

12'
"

o.(2^/2 + 1 - y§) + ft.(2\/2 + \/3 - 1)'

8tt 4aft

12
'

r "
a + 3ft'

9ir 2\/2.aft
r =

12'
"

«.(V2- 1) + ft.(\/2 + 1)'

IOtt 4>ab
r =

12
'

"
2. (a + ft)- (a-ft)-\/3'

11 7T 4\/2.aft
r =

12
'

"

a . (2 -v/2 - ^3 -
1) + ft . (2 y/2 + Vs + 1)

'

7r, r = a.

Hence the following rule : Describe the circle whose radius is the

minor distance, and divide it into n equal parts, each of which will

form the base of a lobe ;
divide half the base into twelve equal parts,

and draw straight lines from the centre, through the points of division,

respectively equal to the above values: and the curve drawn through

their extremities will be the outline of half a lobe (fig. 20).
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The distances may also be found practically, by describing an ellipse

whose axis major is «„ + bn , and «„ — bn the distance between its foci ;

then if straight lines be drawn from one of the foci to the ellipse making
equal angles with each other, and the base of the lobe be divided

into as many equal parts as there are equal angles round the focus :

the distances from the centre to the several points of the lobe are

easily shewn to be equal to the elliptic distances ; and may therefore

be set off from them.

The form of a rack, or curve of an infinite number of lobes to

move with the curves derived from the equation

b

rWab T 2\/ab I b
v a-

- k.y/{a — r).{r
-

b)
- k . (a + b) . tan" 1 \/Lz3L ,

a — r

may be found by making n infinite and a — b =
I, where a and b are

also infinite; and this form is that to which the lobes gradually ap-

proach as n increases : if x and y be rectangular co-ordinates of the

rack, x being measured along its base from one of the apses, and

y be perpendicular to the base, x = bO and y = r — b\

=
(a*, \/l + Wl . (a I by) . tan- \/\.\fX
[

' a 2 a '
) b I —

x

-
bks/ly - f - k.{ab + ¥) . tan" 1 Vr^— .

By Maclaurin's Theorem, the expansion of tan-1 V x- 'V r~^
—

»

b l — y

of tan -,

(l
+

t)
• V i _ as far as the square of t is

-^•^-("•"'S)-(i-£*S)
Vol. VII. Part I. L

or
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t= 2b* + bl + -r , omitting the negative powers of b, as b is infinite;
4

^.V^.tan-VW,-^2 a a I -
!/

=
(«&«

+ bi +
1)

.tan-
\Zjhj

+
{
b +

i) -^y^?;

also b . \/ly — y* + b.(a + b). tan
-1

Vj-^j r

= b^ly-tf + {2b* + bl) . tan" 1 \/X ,

which quantities being substituted in the above equation, we have the

equation to the rack

x =
(«,

+
«j

. tan- VjL * .^.v^i
from which it appears that each lobe of the rack is composed of four

similar and equal parts.

This equation may also be found from the differential equation

dx
k

'
+ k \y-i)

which is immediately deducible from

b *

rde *' + *•('•- H")
dr

'

y/{a - r).{r-b)

If & = 0, y = /.sina

-y (fig. 21), which is a rack that will roll with

figures (17), (18), (19).

HAMNETT HOLDITCH.



NOTE ON FRICTION WHEELS.

It was observed, that a rolling continuous curve cannot drive another after

the driving point has reached its maximum distance : if, however, the curves are

discontinuous, and a new driving point shall come into action at the moment the

former driving point shall have reached its maximum distance, a continued revolv-

ing motion without friction, may, under certain circumstances be produced ; and

this will be the case if two wheels be formed of semilobes of the same system, if

clogging of the wheels can be avoided ; for (fig. 23) when the driving point of

A has arrived at G, a new driving point will come into action at B.

The variation of the angular velocity of the wheel driven, supposing that of

the driving wheel to be uniform ; the oblique mechanical action of the driving

wheel near the apses, which at the apses is towards the centre, and the shocks pro-

duced at the change of the driving points, which would however be received at the

flat surfaces, would unfit such wheels for the purpose of moving weights ; it may
still be a question, whether they might not be successfully employed for purposes of

motion.

When the new driving point comes into action, it is necessary that the point

F should clear itself of the point G. The relative motions of the wheels will be

the same if the wheel B be supposed at rest, and the other to move round it ;

and therefore the point F must describe a curve without the wheel B, or the

radius of curvature of the curve described by the point F, immediately after the

change of the driving points, must be less than the radius of curvature at G, sup-

posing the curvature at G to be convex towards the centre of B; in which case,

the wheels will not clog at G, when the driving point is changed.

Let R be the radius of curvature described by F; if the wheel A be sup-

posed to have moved a little, the motion of F will be perpendicular to FC ; and

GH, FH being consecutive normals, FH will be the radius of curvature of the

curve described by F, CD the radius of curvature of the wheel B at the major

apse, and CE that of A at the minor apse.

12
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CD
Let the small angle BDC*=6; .: z CEA = Q.-~

V.U. *J .
CE _ CD

„„„ „ (CD CD\• < FCE = d icE-CF)>

sinC j£ /Ci> CZ>\

or, if a and 6 be the major and minor distances of the wheel B, and Ra , Rb re-

present the radii of curvature at B and G, and similar quantities with dashes those

of the other wheel, and a - b -
I; then

l-R-Ra =(l-R).Ra .(~-^j;

P.(Rbi
-Ra)

and therefore, R =
l.(Rbl

-Ra) + Ra .Rbi

To prevent clogging at G, therefore R < - Rb ,

I 1

I i I RaRb
.-. by equation (6)

— —- --<-+-
*/ + *-)

ly b i P(Rb -Ra)

i

< T +
1

'(---)U, Rj

Now — = - +
R„ a f. , JV'Mi)

and

the curves being considered convex to the centres at the minor apses;
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1 1 * J
A

~r
~

p~
=

« + r » and
"a **»,

a
"/

/ 11 1

M" 6 '

--C-8

It may be shewn in the same way, in order that the wheels may not clog at

the point B before the driving point at A comes into action, that

1 1

»(»*$)
"• '

"(H)'
and as a, b, a

/t b,
must be positive quantities, both these conditions will be ful-

filled, if

I 1

(*.
+
*i)
*V l

'

I* I

or, *+*._•__, (7),

which may be called the clearing equation; if the value oi'k
t
from this be sub-

stituted in the equation

we have finally

2 A, k.(a + bf r 2

-7==+
V

,—T -k.(u + b)--,

Vo6 • n

for determining the radii of a friction wheel of 2 n teeth ; and by giving different

values to n, sets of friction wheels will be found which will not clog theoretically

just before or after the change of the driving teeth : and such wheels will not clog at

other points, unless the depth of the teeth be very great in proportion to the radii

of the wheels, or the curves used for the construction of the teeth be of complicated

forms.
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An example is given in figure (24), where k = 0, and the clearing equation (7)

becomes 2& 8=/ s
, and equation (8) for determining the radii is therefore

y/zab^nl, and a = -. (l + \/2n
2 + l),

2

6= -.(-1 + V2n2
+1).

Hence, for a wheel of eight teeth, which is derived from a curve of four lobes,

=3 -s
n,if*=i.= 2-37J

l
4
= 4-771

b m 3-771
'

n = 4, and a = 3 -

37] .^

b

If » = 6, a
7
= 4-77)

6

for a wheel of twelve teeth to turn with the former, and the teeth (or half-lobes)

may be described from rules before given.

The flat sides of the teeth must be a little hollowed out to allow of the free

motion of the points, but these have no connection with the rolling sides.



IV. Note on the Motion of Waves in Canals. By G. Green, Esq. B.A.

of Caius College.

[Read February 18, 1839.]

In a former communication I have endeavoured to apply the or-

dinary Theory of Fluid Motion to determine the law of the propagation
of waves in a rectangular canal, supposing £ the depression of the

actual surface of the fluid helow that of equilibrium very small com-

pared with its depth; the depth 7 as well as the breadth /3 of the

canal being small compared with the length of a wave. For greater

generality, /3 and 7 are supposed to vary very slowly as the hori-

zontal co-ordinate x increases, compared with the rate of the variation

of £, due to the same cause. These suppositions are not always

satisfied in the propagation of the tidal wave, but in many other cases

of propagation of what Mr Russel denominates the "Great Primary

Wave," they are so, and his results will be found to agree very

closely with our theoretical deductions. In fact, in my paper on the

Motion of Waves, it has been shown that the height of a wave

varies as

/8-^7-i.

With regard to the effect of the breadth /3, this is expressly stated

by Mr Russel (Vide Seventh Report of the British Association, p. 425),

and the results given in the tables, p. 494, of the same work, seem

to agree with our formula as well as could be expected, considering

the object of the experiments there detailed.
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In order to examine more particularly the way in which the

Primary Wave is propagated, let ns resume the formula?,

{lit;

_ e±d w, _/»-.)
.

gdt g \ •>

s/gyl

where we have neglected the function f, which relates to the wave

propagated in the direction of x negative.

Suppose, for greater simplicity, that fi and y are constant, the origin

of x being taken at the point where the wave commences when
t = 0. Then we may, without altering in the slightest degree the

nature of our formulae, take the values,

(1) <p
= F{x-tVg^),

But for all small oscillations of a fluid, if (a, b, c) are the co-

ordinates of any particle P in its primitive state, that of equilibrium

suppose; (x, y, z) the co-ordinates of P at the end of the time t, and

q> = f<pdt when (x, y, %) are changed into (a, b, c), we have (Vide

Mecanique Analytique, Tome 11. p. 313.)

d<t> , d^> d<&

Applying these general expressions to the formulas (1) we get

$ = r= 'F(a- t y/gy), and x = a -7= F(a - t Vgy)-
Vgy vgy

r

Neglecting (disturbance)
2
, we have

£ = -\A F'{a-ty/gy),
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and consequently,

supposing for greater simplicity that the origin of the integral is at

a - 0.

Hence the value of x becomes

x = a + -
f*dal (a- t \/gy).

Suppose o = length of the wave when t = 0; then £(«) = 0, ex-

cept when a is between the limits and «. If therefore we consider

a point P before the wave has reached it,

J
a

dat(a-t^gy) = f;da^a)=r;

the whole volume of the fluid which would be required to 'fill the

hollow caused by the depression £ below the surface of equilibrium
when t = 0. Hence we get

, Vx = a H ;

7

x being the horizontal co-ordinate of P, before the wave reaches P.

Also, let x" be the value of this co-ordinate after the wave has

passed completely over P, then

£da%(a
- t \/gv) = 0, and x" = a.

If £ were wholly negative, or the wave were elevated above the

surface of equilibrium, we should only have to write - V for V, and

thus

V
x' = a , and x" = a.

7
Vol. VII. Part I. M
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We see therefore, in this case, that the particles of the fluid by
the transit of the wave are transferred forwards in the direction of the

wave's motion, and permanently deposited at rest in a new place at

some distance from their original position, and that the extent of the

transference is sensibly equal throughout the whole depth. These

waves are called by Mr Russel, positive ones, and this result agrees
with his experiments, Vide p. 423. If however £ were positive, or

the wave wholly depressed, it follows from our formula, that the

transit of the fluid particles would be in the opposite direction. The

experimental investigation of those waves, called by Mr Russel, nega-
tive ones, has not yet been completed, p. 445, and the last result

cannot therefore be compared with experiment.

V
The value — which we have obtained analytically for the extent

7
over which the fluid particles are transferred, suggests a simple phy-
sical reason for the , fact. For previous to the transit of a positive

wave over any particle P, a volume of fluid behind P, and equal to

V, is elevated above the surface of equilibrium. During the transit,

this descends within the surface of equilibrium, and must therefore

force the fluid about P forward through the space

©'
admitting as an experimental fact, that after the transit of the wave

the fluid particles always remain absolutely at rest.

Mr Russel, p. 425, is inclined to infer from his experiments, that

the velocity of the Great Primary Wave is that due to gravity acting

through a height equal to the depth of the centre of gravity of the

transverse section of the channel below the surface of the fluid. When
this section is a triangle of which one side is vertical, as in Channel (H),

p. 443, the ordinary Theory of Fluid Motion may be applied with

extreme facility. For if we take the lowest edge of the horizontal

channel as the axis of x, and the axis of % vertical and directed up-

wards, the general equations for small oscillations in this case become
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{A) o = g* + ? + *±,«%
p

'

dt

we have, also, the conditions

(«) • =
jj£

= (when y =
0),

,, w da % *
(»)

— = -rr = - (when - = cot a),' v d<f> y y
'

dy

a being the angle which the inclined side of the channel makes with

the vertical.

The first of these conditions is due to the vertical side, and the

second to the inclined one, since at these extreme limits the fluid

particles must move along the sides.

Now from what has been shown in our memoir, it is clear that

we may satisfy the equation (2?) and the two conditions just given, by

(c)
.

<p + £ (tf + *),

<p
and <pt being two such functions of x and t only that

It now only remains to satisfy the condition due to the upper
surface. Let therefore

= * -
it.,

be the equation of this surface. Then the formula (A) of our paper

before cited gives

o=S~§-§^ (when * =c + £>

M 2
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or neglecting (disturbance)
8

c being the vertical depth of the fluid in equilibrium.

Also at the upper surface p = 0, therefore by continuing to neglect

(disturbance)
2

(A) gives

= St + 777 (when % = c).

Hence, by eliminating £, we get

which by (c) becomes, when we neglect terms of the order y
a and a8

compared with those retained,

=
2gc<t>, + ^.

Or eliminating (pd by means of (C),

_ d2

(f> _ gc d\po
df 2

"

dx% *

The particular integral of which belonging to the wave that proceeds
in the direction of x positive is

*.=/(*-* \/f) ,

and hence the velocity of propagation of the wave is

(D) ** Vf .
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Mr Russel gives V -§— as the velocity, but at the same time

remarks, that in consequence of the attraction of the sides of the canal

fixing a portion of the fluid in its lower angle, we ought in employing

any formula to calculate for an effective depth in place of the real one,

p. 442. Instead of adopting this method, let us compare the formula

(D) given by the common Theory of Fluid Motion, with Mr Russel's

experiments. And as in our theory we have considered those waves

only in which the elevation above the surface of equilibrium is very
small compared with the depth c, it will be necessary to select those

waves in which this condition is nearly satisfied. I have therefore taken

from the Table, p. 443, all the waves in which

and have supposed g = 32i

Y

feet: the results are given below.

Observation.
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The theory of the motion of waves in a deep sea, taking the most

simple case, in which the oscillations follow the law of the cycloidal

pendulum, and considering the depth as infinite, is extremely easy, and

may be thus exhibited.

Take the plane (a? as) perpendicular to the ridge of one of the waves

supposed to extend indefinitely in the direction of the axis y, and let

the velocities of the fluid particles be independent of the co-ordinate y.

Then if we conceive the axis % to be directed vertically downwards,

and the plane (xy) to coincide with the surface of the sea in equilibrium,

we have generally,

dx2 +
d%*

'

The condition due to the upper surface, found as before, is

dd> dz
d>0=edt-w-

From what precedes, it will be clear that we have now only to

satisfy the second of the general equations in conjunction with the

condition just given. This may be effected most conveniently by

taking

<j>
= He'T' sin -^ (v't

-
x),

by which the general equation is immediately satisfied, and the condition

due to the surface gives

*- T «^. «- , .,' - V£.
where \ is evidently the length of a wave. Hence, the velocity of

these waves vary as \A, agreeably to what Newton asserts. But the

velocity assigned by the correct theory exceeds Newton's value in the

ratio *s/Hr to \/2, or of 5 to 4 nearly.
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What immediately precedes is not given as new, but merely on

account of the extreme simplicity of the analysis employed. We shall,

moreover, be able thence to deduce a singular consequence which has

not before been noticed, that I am aware of.

Let {a, b, c) be the co-ordinates of any particle P of the fluid when

in equilibrium. Then, since

27T
5 7T - HX -VL1 2tt

<b = He \ sm — (v't-x); .-. <t> = ——— e
~

*• cos . (v't - a),T X 2ttv' X '

and the general formulae (2) give

x = a + -r~ = a — — e *• sin —- (v t -
«),da v X '

d<b H -!?« 2tt , .

% = c + -j-=c-\ r e * cos —- w t — a).dc v X '

Hence,

and therefore any particle P revolves continually in a circular orbit, of

which the radius is H «.

round the point which it would occupy in a state of equilibrium. The

radius of this circle, and consequently the agitation of the fluid particles,

decreases very rapidly as the depth c increases, and much more rapidly

for short than long waves, agreeably to observation.

Moreover, the direction of the rotation is such, that in the upper

part of the circle the point P moves in the direction of the motion of

the wave. Hence, as in the propagation of the Great Primary Wave,
the actual motion of the fluid particles is direct where the surface of

the fluid rises above that of equilibrium, and retrograde in the contrary

case.





V. On the Nature of the Molecular Forces which regulate the Constitu-

tion of the Luminiferous Ether. By S. Earnshaw, M.A. of St. John's

College, Cambridge.

[Read March 18, 1839.]

There are already before the world by various authors several

Memoirs, which, collaterally or incidentally, embrace the subject of the

present communication. There is observable in them, however, much

disagreement of results, which seems chiefly to arise from the extreme

length and complexity of the investigations by which those results are

obtained
;
to avoid which, as much as possible, their authors are compelled

to adopt means of simplification, which we cannot always be certain a

priori are sufficiently approximative. In the following pages the subject
will be found to be treated in a manner perfectly new and direct, and,

it is hoped also, satisfactory, inasmuch as the analytical operations employed
are brief and simple, involving no principles of a difficult or doubtful

character.

The authors to which I have just alluded have generally adopted, as

a most extensive means of simplification, symmetrical arrangements of

the particles of the ethereal medium. This may be necessary and even

allowable in some cases : but as it has never been shewn that such

arrangements actually do exist in Nature, nor even that they can exist

in Nature, I have been careful to confine myself to the investigation of

properties which are independent of arrangement, or rather, which do

not involve the hypothesis of a peculiar arrangement.
Vol. VII. Part I. N
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I may also remark that the investigations which follow are in other

respects of a very general character. For, in this attempt to discover

the laws of molecular action of the ether, amongst the experimental

properties, assumed as the basis of analytical investigation, are, I believe,

none which are peculiar to the luminiferous ether. I think it probable,

that most terrestrial bodies possess in a greater or less degree of per-

fection the properties here assumed : and consequently, the title of this

paper might have been made more comprehensive. It might, perhaps, not

improperly be,
" An Investigation of the Nature of the Molecular Forces,

which regulate the Internal Constitution of Bodies.
"

This might, however,

be disputed, and therefore in the investigations I have referred only to

the luminiferous ether. Nevertheless, that the reader may more easily

judge what degree of claim the following pages have to that general

character which is here ascribed to them, I shall, in as few words as

possible, introduce a statement of the experimental assumptions, and the

results respectively derived from them.

I. It is assumed that the ether consists of detached particles; each

of which is in a position of equilibrium, and when slightly disturbed

is capable of vibrating in any direction. (Many solid as well as aerial

bodies transmit sound, which is generally supposed to imply the exist-

ence of the same properties in them as are here assumed to be true of

the ether.)

The most curious and perhaps least expected result of this assumption

is, that the molecular forces which regulate the vibrations of the ether do

not vary according to Newton's law of universal gravitation : and it is not

a little remarkable, that a force, whether attractive or repulsive, varying

according to this law, is the only one which cannot possibly actuate the

particles of a vibrating medium.

II. It is next assumed, that the motion of a vibrating particle is

more affected by the influence of the particles which are near to it than

of those which are more remote. (This is certainly true of many other

substances besides the ether.) The result which is sought to be derived

from this assumption is, that the molecular forces which regulate the vibra-
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tion of the jxirticles are repulsive, and vary according to an inverse

power of the distance greater than 2.

III. It is lastly assumed, that the ether exists (or at least is capable

of existing) as one mass held together by the attraction of its elementary

molecules. This assumption is necessary, in order that the dispersion of

the medium which would naturally result from the repulsive forces which

regulate the vibration of its particles, may be thereby prevented.

The result which is derived from this necessary assumption is, that

each particle exerts (in addition to the repulsive force before mentioned)

an attractive force, which varies according to Newton's Law of universal

gravitation.

By reversing the problem, I have been able to shew, that though
Newton's law is the only one which cannot enable the particles to vibrate,

yet it is the only law of force which can enable them to constitute and

maintain themselves a permanent medium, without endangering, or in any

way affecting their vibrating or luminiferous property.

I have on these grounds not hesitated to express my opinion, that

the particles of the luminiferous ether are each endued with two forces of
distinct characters and uses; one attractive, to preserve themselves a per-

manent medium, varying inversely as the square of the distance; and the

other repulsive, to which is due their luminiferous property, varying in a

higher inverse ratio of the distance than the square.

A SYSTEM OF DETACHED PARTICLES.

1. If V denote the sum of the quotients formed by dividing each

attracting body by its distance from the attracted body ; then V = C is

the equation of a surface at any point of which if the attracted body
be placed, it will begin to move in the direction of a normal.

N2
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For, let f, g, h be the co-ordinates of the attracted body ; F, G,

H the attractions of the whole system upon it parallel to the co-ordi-

nate axes, then

F = dfV,G = dgV,H = dh V.

But the equation of the tangent plane at that point of the pro-

posed surface where the attracted body is placed, satisfies the differen-

tial equation,

= dfF.df + d
gV.dg + dkV.dh\

:. 0= F.df+G.dg +H.dh.

This equation shews that the resolved part of the attractive force

is zero, in the direction of the tangent plane ; and therefore the whole

attraction is in the direction of the normal.

2. For the sake of brevity, I shall denominate the surface V=-C,
the parametric surface passing through the point f, g, h.

Different points in space may have corresponding different parametric

surfaces; any one may be found by assigning the proper value to C.

Their equations differ only in the value of the constant C, which,

for this reason, I shall call the parameter.

If any parametric surface pass through an attracting particle, its

parameter will be infinite, because at that point V is infinite; in

which case the proposition will fail. The proposition is true of re-

pulsive forces, or if some of the particles exert repulsive and some

attractive forces
;
but when the forces are all attractive, V can neither

be evanescent nor negative: since, however, it is infinite when the

attracted particle touches any one of the attracting particles, and is not

infinite in other positions, there must be some intermediate positions

which make V a minimum, and there may be positions in which V is

a maximum.

3. The parametric surfaces which pass through points indefinitely

near to a point of neutral attraction, are in general similar concentric
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hyperboloids of one and two sheets, the common centre of which is the

point of neutral attraction. Certain points, however, have the asymptotic

surface for their characteristic surface.

Let fgh be the co-ordinates of K, the point of neutral attraction,
and f + x, g + y, h + «, the co-ordinates of P, a point very near to

K. Let the value of V at K be C, and at P, C. Then the equa-
tions to the respective surfaces are

C = V, and C = V
;

where V is the same function of / + x, g + y, k + « that V is of f

.: C= V + dfV.x + da V.y + dh V.x + d}V.^ + d2

gV .%

as
2

+ d\V .- + dfdgV ,xy + dfdhV .x% + dgdh V ,y% + &c.
SB

But because K is a point of neutral attraction, dfV = 0, dg
V = 0,

dh V=0, and

.-. 2(C- C) = d}F.x* + dlF.y* + dlV.%* + 2d,dg U.xy + &c.

This, neglecting terms above the second order, being the general

equation of surfaces of the second order which have a centre, by

transposing the co-ordinate axes so as to coincide with the principal

axes of the surface, the terms containing xy, y%, x» will disappear,

leaving only

2(C- C) = d*f V.x* + dg V.tf + d\V.%\

which for indefinitely small values of x, y, % may be regarded as the

equation of the parametric surface. It must be remembered that the

coefficients of a?, if, ss
s are subject to the condition,

= d}r+dg F+dlV;

and because at least one of these coefficients will be negative, and one

positive, the equation is that of an hyperboloid.
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4. That parametric surface which contains a point of neutral at-

traction will be a cone, which is asymptotic to all the hyperbolic para-

metric surfaces belonging to the other points.

For, the parameter of the surface passing through K, the point of

neutral attraction is C", and therefore the equation of it is

= d}V. a? + d2

g V. f + d2

h V.z\

which is the asymptote of the surfaces included in the equation,

2(C- C) = d)V.x? + d*g V.f + d\V.%\

6. If the position of equilibrium be such, that only one of the

quantities d) V, d2

g V, d\V is negative, as for instance, d)V; then the

axis of the asymptotic cone will coincide with the axis of x ; and all

points within this cone will have hyperboloids of one sheet for their

parametric surfaces, and their parameters will be less than C". The

points without this cone will have hyperboloids of two sheets for their

parametric surfaces, and their parameters will be greater than C
If the position of equilibrium be such, that two of the quantities

d} V, cCgV, d\V are negative, as for instance, d\ V and d\ V, the axis

of the asymptotic cone and the parametric surfaces will be as in the

last case; but the parameters of points within the cone will be greater

than C", and of points without it, less than C.

7. If the molecular forces are all repulsive, then the sign of V
will be changed : but the pai-ametric surfaces will be hyperboloids, as

before.

8. If the position of equilibrium be such, that d) V = 0, dg V = 0,

and d\V = 0, then df V, dg V, dh V, i.e. the attractions F, G, H,
being also evanescent, the particle is unattracted in every direction, at

least for small displacements from the position of equilibrium. An
example of this is afforded in the case of a particle placed within a

spherical or ellipsoidal surface, composed of attracting or repelling par-
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tides. If the position of equilibrium be such, that one of them, as

d) V, is evanescent, then, F being evanescent also, for small displace-

ments parallel to the axis of at, the particle will be unattracted. An
example of this is afforded in the case of a particle placed within a

hollow elliptic or circular cylinder of indefinite length. The displace-

ment of particles placed in such positions as those here considered

would not bring into action any forces of restoration ; on which account

the particles would not vibrate. It is evident, therefore, that the phe-
nomena of light and sound are not due to the motions of particles

placed in such positions : and as the purpose of this paper is to ex-

amine the constitution of media supposed to be capable of transmitting

light, a phenomenon due to vibration, we shall, in what follows, always

suppose that none of the quantities d} V, d2

g V, d\ V are evanescent :

under which supposition also, they cannot be equal, since their sum
= 0.

9. Since the force which urges a displaced particle acts in the

direction of a normal to the parametric surface in which the particle is

at any moment situated, there are in general only three directions in

which a particle can be displaced, so that the force called into play

may act in the direction of the displacement. These directions coincide

with the principal axes of the parametric hyperboloids. The exceptions
to this are, when the constitution of the system is such, that two of

the three quantities, (Pf V, d\ V, d\ V, are equal ; in which case the asymp-
totic cone has a circular base, and the exterior parametric hyperboloid
becomes the hyperboloid of revolution of one sheet : and since the normals

to this surface, corresponding to points in that principal section which

is perpendicular to the axis of revolution, all pass through the centre,

the force of restitution will always act in the line of displacement, when
the particle is disturbed in any direction in this plane. This is the only

exception.

10. It is very important to remark, that since the parametric sur-

faces cannot be spherical in any case, the constitution of a medium,

composed of detached attractive particles, can never be such that the

force of restitution called into play by a disturbance in any direction
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shall act in the line of displacement. Hence those media which are

distinguished as uncrystallked, cannot consist of detached particles which

either attract or repel each other, with forces varying inversely as the

square of the distance; because it is assumed as a characteristic pro-

perty of such media, that the forces of restitution act always in the

direction of displacement.

11. To find the force of restitution, when a particle is slightly dis-

turbed from its position of equilibrium.

Let F, G', H' be the resolved parts of the force of restitution

parallel to the co-ordinate axis upon the particle at P; then F' is the

same function oif + x, g + y, h + z, that F is off, g, h, and therefore

F' = F + dfF.x + d9F.y + dhF.x + ...

or, F' = dfV+ d}V.x + dfdg V .y + dfdh V .% + ...

= d}V.x + terms involving a?
2
, y

2
, %-, xy, &c.

because dfV = 0, dfdg V = 0, dfdh V = 0. (Art. 4).

Similarly, G' = d\ V . y + ...

and H' = d\V .% + ...

Hence, if the system consisted of fixed particles, the particle P
only being moveable, the equations for P's motion would be

dr
t
x = d)V . x \

tt
ty = dlV.y

d\z = dlV.%\

very nearly.

It is remarkable, that —— + — + — = 0.
x y x

12. From this investigation it appears, that the force of restitution

parallel to any one co-ordinate axis depends only upon its displacement
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parallel to the same axis. We may therefore consider the effect of each

component of the displacement separately.

It appears from the equations just obtained, that —
d)V,

-— (Pg V,
— d\V are the absolute forces of restitution.

Since one at least of the quantities d) V, d] V, d\V is negative, and

one at least positive, there will be at least one principal axis parallel

to which a disturbed particle can vibrate, and at least one parallel to

which a disturbed particle cannot vibrate. Suppose for instance, that

d}V is positive and d\V negative, then the first equation dfx = d}V. x

takes the form

dfx — a2

X,

the integral of which is

x = CV' + C"e- at
;

a result which shews that x must increase continually with t. The

motion in this direction will therefore be one of translation.

But for that part of the displacement which is parallel to the axis

of %, the equation of motion is

d?% m — 7
2
s.

The integral of which is

% = A cos (7/ + B),

which denotes vibration.

13. If the constitution, or arrangement of the particles, of the

medium is such that dgV is positive, the motion parallel to y will be

one of translation; and consequently there will only be one line in

which a particle can be displaced, so that its motion may be vibratory.

14. If the constitution of the medium be such that d*gV is negative,

the motion parallel to y will be vibratory; and therefore if the particle

be displaced in any direction in the plane y%, it will continue to vibrate

in that plane, describing an elliptic orbit.

Vol. VII. Part I. O
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15. It appears then that at the most, the equilibrium can only be

stable in one plane; and that the medium may be so constituted that

the equilibrium shall be stable only in one line. The character of in-

stability, which in the preceding articles we have shewn necessarily

attaches to a medium constituted of particles placed at finite intervals,

and attracting each other with forces varying as
-=p,

cannot be removed

by supposing the particles to repel each other with forces varying ac-

cording to the same law. The equation d}V + d*K+ d\V = 0, frOm

which the instability arises, holds equally for attraction and repulsion.

It may be observed also that the instability cannot be removed by

arrangement; for though the values of d)V, d^V, d\V depend upon the

arrangement of the particles, the fact that one at least must be posi-

tive and one negative depends only upon the equation d}V+d\V + dlf
r
=0,

which is true for every arrangement. And consequently, whether the

particles be arranged in cubical forms, or in any other manner, there

will always exist a direction of instability.

It is therefore certain, that the medium in which luminiferous waves

are transmitted to our eyes is not constituted of such particles. The

coincidence of numerical results, derived from the hypothesis of a

medium of such particles, with experiment, only shews that numeri-

cal results are no certain test of theory, when limited to a few cases

only.

16. It has been noticed, that the instability of a system depends

upon the equation d)V + d% V + d\ V = 0. With the ordinary law of

attraction it always holds good. If, however, the force of molecular

attraction be assumed to vary as
-j^,

and we write

V for 2 l!-4 ,

n — 1

we shall find

d}V+ d)V + dlV= (n
-

2) 2
(A) (i).
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By an investigation precisely similar to that in Art. 11, we find

F' = d}V.x + ..

G' = d*
g V.y + ...

H'-dlF % + ..

Now, since 2
[-^r,]

is necessarily positive, one at least of the quan-

tities, d}V, d 2

g
Vt d%V, in equation (1) is necessai-ily positive for all

values of n equal to or greater than 2
;

and consequently, one at

least of the equations (2) must necessarily denote translation. And
this is true whatever be the arrangement of the particles.

But when n is less than 2 the right-hand member of (1) is

negative, in which case it is possible that all the equations (2) may
denote vibration.

Hence, if the luminiferous ether consist of detached particles which

attract each other with forces varying as yr ,
n must be less than 2.

In a similar manner it may be shewn, that if the ether consist

of repulsive particles, n must be greater than 2.

It must be remarked, however, that although these conditions with

regard to the value of n should be satisfied by the law of attraction

of the particles, yet their arrangement must be such as shall make

dyV, d\V, d\V all negative for every particle in the system, other-

wise it will be unstable and incapable of transmitting light.

17. If the medium be of the kind denominated uncrystallized, the

vibration of a particle in any direction must be completed in the same

time, in which case the arrangement must be such as simultaneously

to satisfy the equations,

d}V=dlV=dlV=^ s(2!L)
f

n being less than 2.

o2
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We shall arrive at the same result if we consider an un crystallized

medium to be such that the force of restitution acts always in the

line of displacement; for in this case the parametric surface, the ge-

neral equation of which is

2(» -
1) (C- C) = d}V.m? + d^V.f + d\V .*" (Art. 3).

must be spherical ; which requires that

d}V = d>V=dtV.

18. It can be easily shewn that n must be greater than unity.

For the number of particles at the distance r from the attracted

particle is proportional to r2
, and therefore

n - 2 m r2

2 oc 2 ,

- 1
oc 2

rn-\
'

hence, unless n be greater than unity, the effect of the more distant

parts of the medium upon the value of —-— 2—^ will be greater

than the effect of the adjacent particles. Now the time of vibration

of a particle depends on the value of dj V, or —-—
. 2 ——^ ; and there-

fore unless n be greater than unity, the parts of the medium which

are more remote will exert a greater influence upon the time of vi-

bration than those exert which are near. Now, Optical phenomena
seem to indicate that the adjacent particles exercise most influence ;

and therefore n must be greater than 1.

19- It is probably not conformable to the simplicity of Nature,

that n should be fractional
; we have shewn that it must be greater

than 1 and cannot be equal to 2, consequently n is greater than 2.

This result is important, as we are enabled to infer from it imme-

diately, by the aid of (16), that



OF MOLECULAR FORCES. 109

If the ethereal medium consist of detached particles, the action of
which on each other is 'proportional to a power of the distance, that

power must be greater than 2, and the force must be repulsive.

I have pleasure in remarking, that this result so far as it goes,

coincides exactly with that which M. Cauchy has obtained in his
" Me"moire sur la dispersion de la lumiere," page 191, where from his

investigations he infers respecting the mutual action of two molecules

of ether, "que, dans le voisinage du contact, cette action soil repulsive

et reciproquement proportionelle au bi-carre de la distance."

20. If the particles of ether exert a repujsive action upon each

other, as we have just shewn must be the case, they will naturally

endeavour to disperse themselves through all space, and form a medium
coextensive with the boundaries of the universe. Here then a for-

midable difficulty presents itself to our notice. If the medium be of

finite dimensions it must be enclosed in an envelope, capable of re-

straining the expansive energy of the whole mass of particles. The

more extensive the medium the greater must be the strength of the

envelope. Is it probable that the constitution of the Universe is such

as to require that the whole should be enclosed in a huge vessel of

inconceivable strength? This objection would in my opinion be fatal

to the hypothesis of a system of detached particles, were it not for the

following considerations.

Upon examining the preceding articles, it" will be seen that the

luminiferous ether must be such that d}V, d2

g V, d\V are all equal and

negative. Now the properties of these quantities will not be in the

least affected, if we assume that the particles exert attractive forces as

well as repulsive forces, providing the attractive forces are proportional

to -=p.
For let us suppose that

V =

where n and m are respectively the attractive and repulsive forces exerted

by the same particle at the distance unity.
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Then as in (16), we have

d}V + dlV+dlV= - (n -
2) 2

(J^)
;

equations which do not contain the quantity /d.

I think it therefore not improbable, that each particle of the lumi-

niferous ether exerts two forces, one attractive
.
and varying reciprocally

as the square of the distance; and the other repulsive and varying

inversely in a higher ratio than the square; at any rate this supposi-

tion does away with the necessity of the envelope mentioned at the

beginning of this article.

21. Let us now generalize the problem, and inquire for what laws

of molecular force vibration is possible in the particles of ether.

Let tyr be the law of molecular force; and assume V = — 2 {mfr <f>r) ;

.-. d)V+dlV+dlV=--2 L(^ +
0V)},

(p'r for brevity denoting dr (pr.

Now one condition to be fulfilled is, that d)V+djV+ d\ V= a nega-
tive quantity, and consequently the law of force must be such that

2 d>r—*— + <p'r
= a positive quantity ;

for all values of r from r = the distance between two neighbouring

particles, to r = oo
; let ^r be any function of r which is positive be-

tween these limits, then

-f- +<pr = ^r;

.'. %r<pr + r*<p'r
=

r^-^r,

.-. r*<pr
= C+ t(f*+r),
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This formula contains every possible law of force : the first term

shews the propriety of what we have done in the last article, and further

proves, that an attractive molecular force varying inversely as the square
of the distance is the only force which possesses the properties requisite

for removing the difficulty there stated; or that at any rate it is the

simplest and best adapted for that purpose.

Further; for a reason analogous to that assigned in (18),

r2
1
—— + <j)'r) , or r^-^r

^ ............ .

must be a function of r, which decreases as r increases, and vanishes

when r is infinite. Hence, if %(r) be any function of r which is

positive between the least and greatest limits of r for the whole medium,

and which decreases as r increases and vanishes when r is infinite, then

C 1

<t>(r)
=
^ + ^frX (r).

Every possible law of force is included in this formula; but the

converse is not necessarily true, viz. that every law of force included in

this formula is possible.

There may be other conditions to be satisfied, either as to the form

of the arrangement of the particles, or as to their distance from each

other, or as to the possibility of the medium existing in a state of

finite extension, or as to other circumstances unknown to us at present

which may perhaps exclude all the forms but one; which one would

in that case be the actual law in the luminiferous ether. Or there may
be peculiarities in the vibrations which constitute the waves of light

(such as their transversality) which will hereafter enable us to determine

the required law of mutual action of the particles.

22. Whatever be the law of molecular force of the luminiferous

ether, each particle is placed in such a position when in equilibrium,

that the value of V for that particle is a maximum.

Let us employ the notation of (21): then V=- 2(mft <pr), and
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d}V + dg V + d\V = - il* {££ +
0>)}

= —
2(/»\J/-r),

and every one of the quantities d}V, d\V, d\V is negative, whether

the particle of ether (the state of which we are investigating) be within

a crystallized body, or in vacuo, or in an uncrystallized body.

In order that V may be a maximum, we must have fulfilled the

following conditions, viz.

dfV=0, d
gV=0, d>V=0 (1),

d}V, d
g V, d\V all negative (2),

and

d}V.dg V>(dsdg vy

div.d\v>(dg
dh vy

d}V.d\v>(dfdK vy

(3).

The three conditions marked (1) are fulfilled, because the particle

is in equilibrium by hypothesis ;
we have shewn above that the three

conditions (2) are fulfilled, otherwise the medium could not be lumini-

ferous, i. e. its particles could not vibrate in any direction
; and the

last three conditions marked (3) are fulfilled, because the directions of

the co-ordinate axes have been taken, such that dfdgV = 0, dgdhV = 0,

and dfdhV = 0. Consequently V is a maximum.

S. EARNSHAW.
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VI. Supplement to a Memoir on the Reflexion and Refraction of Light.

By G. Green, Esq. B.A. of Caius College.

[Read May 6, 1839.]

In a paper which the Society did me the honour to publish some time

ago, I endeavoured to determine the laws of Reflexion and Refraction

of a plane wave at the surface of separation of two elastic media, sup-

posing this surface perfectly plane, and both media to terminate there

abruptly : neglecting also all extraneous forces, whether due to the action

of the solid particles of transparent bodies on the elastic medium, which

is supposed to pervade their interstices, or to extraneous pressures. I am

inclined to think that in the case of non-crystallized bodies the latter

cause would not alter the form of our results in the slightest degree ;

and possibly there would be some difficulty in submitting the effects

of the former to calculation. Moreover, should the radius of the sphere

of sensible action of the molecular forces bear any finite ratio to X, the

length of a wave of light, as some philosophers have supposed, in order

to explain the phenomena of dispersion, instead of an abrupt termination

of our two media we should have a continuous though rapid change of

state of the ethereal medium in the immediate vicinity of their surface of

separation. And I have here endeavoured to shew, by probable reasoning,

that the effect of such a change would be to diminish greatly the quan-

tity of light reflected at the polarizing angle, even for highly refracting

substances: supposing the light polarized perpendicular to the plane of

incidence. The same reasoning would go to prove that in this case the

quantity of the reflected light would depend greatly on minute changes

in the state of the reflecting surface. I have on the present occasion

Vol. VII. Part I. P
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merely noticed, but not insisted upon, these inferences, feeling persuaded
that in researches like the present, little confidence is due to such con-

sequences as are not supported by a rigorous analysis.

The principal object of this supplement has been to put the equations

due to the surface of junction of two media, and belonging to light

polarized perpendicular to the plane of incidence, under a more simple

form. The resulting expressions have here been made to depend on

those before given in our paper on Sound, and thus the determination

of the intensities of the reflected and refracted waves becomes in every

case a matter of extreme facility. As an example of the use of the

new formulae, the intensities of the refracted waves have been de-

termined for both kinds of light : the consideration of which waves had

inadvertently been omitted in a former communication.

Perhaps I may be permitted on the present occasion to state, that

though I feel great confidence in the truth of the fundamental principle

on which our reasonings concerning the vibrations of elastic media have

been based, the same degree of confidence is by no means extended to

those adventitious suppositions which have been introduced for the sake

of simplifying the analysis.

Let us here resume the equations of the paper before mentioned,

namely,

dcp d\j/ _ d<pt d^f,
"

dx dy dx dy

(17)

d(j>

dy
djf_

dx dy dx
i (when x = 0).

d*(j> d'cp,

g*dt* g;d?

y*dt* yfdt
2

where u and v, the disturbances in the upper medium parallel to the

axes x and y, are given by
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_ d<p d\\,

dx dy
'

_ d<f> d\js

dy dx '

u
t
and v, the disturbances in the lower medium being expressed by

similar formulae in
rf>t

and ^.

The two last equations of (17) give, since

x = £•= X

<p'
= M

2

$,', y = m
2

^/ ;

<p and <pt being accented for a moment to distinguish between the par-

ticular values belonging to the plane (yz) and their more general values

(j>
= e

hx

<f>
and

<£,
- e"

6

^/.

The correctness of these values will be evident on referring to the Memoir,

formulae (20), (21), and recollecting that

b = a' = «;.

Hence the first equation gives, since x = 0,

• • *'
" "

bWTT) ~dy~
' ana + btf + 1) dy

'

Also the second equation may be written,

dj, _d±,_d$__d(ti . 0*
2 -

1)' dfy,

dx dx
"

dy dy b (m
2 + 1) dy

2
'

And since we may differentiate or integrate the equations (17) relative

to any variable except x, we get for the conditions requisite to com-

plete the determination of ^ and
>//,,

p2
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(29) dJL _d^_ (»*
- If gfr I

(when a? = 0).

Or neglecting the term which is insensible except for highly refracting

substances,

(3°)
tf^ _ A^ (when * =

0),

* where m = — is the index of refraction.

These equations belong to light polarized in a plane perpendicular

to that of incidence, and as <p and
<pt

are insensible at sensible distances

from the surface of junction of the two media, we have, except in the

immediate vicinity of this surface,

_ ety
du

V = — -TV" .

dx

*
Though these equations have been obtained on the supposition that the vibrations

of the media follow the law of the cycloidal pendulum, yet as (b) has disappeared, they

are equally applicable for all plane waves whatever.

In fact, instead of using the value

yp-/
= a

t
sin (at

x + by + ct),

and corresponding values of the other quantities, we might have taken the infinite series

yf/t
= Sa

(
sin n (at

x + by + ct),

where a and n may have any series of values at will. But the last expression is the

equivalent of an arbitrary function of

a
t
x + by + ct.

Or the same equations might have been immediately obtained from (17), without in-

troducing this consideration. The method in the text has been employed for the sake of

the intermediate result (29), of which we shall afterwards make use.
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When light is polarized in the plane of incidence, the conditions

at the surface of junction have been shewn to be

w — w
t

(32) dy^

'

dw^
\ (when x = 0).

dx dx

Since in these conditions we may differentiate or integrate relative

to any of the independent variables except x, we see that the expressions

(30) and (32) are reduced to a form equivalent to that marked (A) in

our paper on Sound ; and the general equations in
>//

and w being the

same, we may immediately obtain the intensity of the reflected or re-

fracted waves, by merely writing in the simple formulae contained in

that paper,

A = 1 and A, = 1 for light polarized in the plane of incidence;

or A = -5 and A, = —5 for light polarized perpendicular to the plane of
7 y'

• -aincidence.

As an example, we will here deduce the intensity of the refracted

wave for both kinds of light.

Representing, therefore, the parts of w and w, due to the distur-

bances in the Incident Reflected and Refracted waves by

f(ax + by + ct), F(- ax + by + ct), and f^ap + by + ct)

respectively,
and resuming the first of our expressions (7) in the paper

on Sound, viz.—

f =
*

IA +
a )

S"

we get for light polarized in the plane of incidence, where A = A, = 1,

2 cos 9 sin 0,/
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For light polarized perpendicular to the plane of incidence, we

have A = — and A = —;. If, therefore, we here represent the parts

of f and yfft
due to the same disturbances by / F and /, we get

ft
2 sin 9, cos 9 2

f'~^f_ cot 9,

m
sin 9 cos 9,

'

cos 9 sin 9
'

yf
+

cot 9 cos 0, sin 9,

Also, if B be the disturbance of the incident wave in its own

plane, and D
t
the like disturbance in the refracted wave, we have by

first equation of (31),

B sin 9 = u = Y-
= bf {ax + by + ct),

and B, sin 0,
=

w,
=
^'

=
bf, (ax + by + ct),

retaining in
>//•

the part due to the incident wave only.

Thus by writing the characteristics merely,

Si sin fl /' _. cosg

B sin 0,f cos 9
t

'

cos 9 sin 9

cos 9, sin 9,

cos 9 sin 9

cos0 I,

~
cos0. sin ftHi +

cos0, | cos sin 9

cos9 f tan (0,
-

0)

COS0

1

d *
tan (0,-0) 1

»V
,

tan(f+ft)J»
cos 9

t
sin

7

which agrees with the formula in use. (Vide Airy's Tracts, p. 358)<

In our preceding paper, the two media have been supposed to ter-

minate abruptly at their surface of junction, which would not be true

of the luminiferous ether, unless the radius of the sphere of sensible

action of the molecular forces was exceedingly small compared with \,

the length of a wave of light.
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In order, therefore, to form an estimate of the effect which would
be produced by a continuous though rapid change of state of the

ethereal medium in the immediate vicinity of the surface of junction,
we will resume the conditions (29), which belong to light polarized in

a plane perpendicular to that of Reflexion, viz.

and instead of supposing the index of refraction to change suddenly
from to /a, we will conceive it to pass through the regular series of

gradations,

MO. Ml! l"2j M3 fi„;

t being the common thickness of each of these successive media.

Then it is clear we should have to replace the last system by

m to = to, and$ -% -£^£ C . T
),

to = to, <*%-%-J^fj Sf c* = •*

*->*-«--**• "*
"3F" "3*

"
m!-,« + rf-0 6^ {•-(-i.-OI.

But it is evident from the form of the equations on the right

side of system (33), that the total effect due to the last terms of

their second members will be far less when n is great, than that due
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to the corresponding term in the second equation of system (29)*.

If, therefore, we reject these second terms, and conceive the common
interval r- so small that the result due to the first terms may not

differ very sensibly from that which would be produced by a single

refraction, we should have to replace the system (29) by (30), and the

intensity of the reflected wave would then agree with the law assigned

by Fresnel. In virtue of this law, however highly refracting any
substance may be, homogeneous light will always be completely po-

larized at a certain angle of incidence ; and Sir David Brewster states

that this is the case with diamond at the proper angle. But the phe-

nomena observed by Professor Airy appear to him entirely inconsistent

with this result (Vide Camb. Phil. Trans., Vol. iv. p. 423.) ;
what im-

mediately precedes seems to render it probable that considerable dif-

ferences in this respect may be due to slight changes in the reflecting

surface.

* In fact, in the system (33) each of the last terms will, in consequence of the factors

(/*,*
-

1'*)*' &c be quantities of the order -5 compared with the last term of (29')» and

as their number is only n, their joint effect will be a quantity of the order - compared

with that of the term just mentioned.
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VII. On the Propagation of Light in Crystallized Media.

By G. Green, B.A. Fellow of Caius College.

[Read May 20, 1839.]

In a former paper I endeavoured to determine in what way a plane
wave would be modified when transmitted from one non-crystallized

medium to another ; founding the investigation on this principle : In

whatever manner the elements of any material system may act upon
each other, if all the internal forces be multiplied by the elements of

their respective directions, the total sum for any assigned portion of the

mass will always be the exact differential of some function. This principle

requires a slight limitation, and when the necessary limitation is intro-

duced, appears to possess very great generality. I shall here endeavour

to apply the same principle to crystallized bodies, and shall likewise

introduce the consideration of the effects of extraneous pressures, which

had been omitted in the former communication. Our problem thus

becomes very complicated, as the function due to the internal forces,

even when there are no extraneous pressures, contains twenty-one
coefficients. But with these pressures we are obliged to introduce six

additional coefficients ;
so that without some limitation, it appears quite

hopeless thence to deduce any consequences which could have the least

chance of a physical application. The absolute necessity of introducing

some arbitrary restrictions, and the desire that their number should be as

small as possible, induced me to examine how far our function would be

limited by confining ourselves to the consideration of those media only in

which the directions of the transverse vibrations shall always be accurately

Vol. VII. Part II. Q
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in the front of the wave. This fundamental principle of FresnePs Theory

gives fourteen relations between the twenty-one constants originally enter-

ing into our function ; and it seems worthy of remark, that when
there are no extraneous pressures, the directions of polarization and the

wave-velocities given by our theory, when thus limited, are identical

with those assigned by Fresnel's general construction for biaxal crystals ;

provided we suppose the actual direction of disturbance in the particles

of the medium is parallel to the plane of polarization, agreeably to the

supposition first advanced by M. Cauchy.

If we admit the existence of extraneous pressures, it will be ne-

cessary, in addition to the single restriction before noticed, to suppose
that for three plane waves parallel to three orthogonal sections of our

medium, and which may be denominated principal sections, the wave-

velocities shall be the same foi» any two of the three waves whose fronts

are parallel to these sections, provided the direction of the corresponding
disturbances are parallel to the line of their intersection. With this

additional supposition, the directions of the actual disturbances by which

any plane wave will propagate itself without subdivision, and the wave-

velocities agree exactly with those given by Fresnel, supposing, with

him, that these directions are 'perpendicular to the plane of polarization.

The last, or Fresnel's hypothesis, was adopted in our former paper. But

as that paper relates merely to the intensities of the waves reflected and

refracted at the surface of separation of two media, and as these inten-

sities may depend upon physical circumstances, the consideration of

which was not introduced into our former investigations, it seems

right, in the present paper, considering the actual situation of the theory

of light, when the partial differential equations on which the determination

of the motion of the luminiferous ether depends are yet to discover, to

state fairly the results of both hypotheses.

It is hoped the analysis employed on the present occasion will be

found sufficiently simple, as a method has here been given of passing

immediately and without calculation from the function due to the internal

forces of our medium to the equation of an ellipsoidal surface, of which

the semi-axes represent in magnitude the reciprocals of the three wave-
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velocities, and in direction the directions of the three corresponding dis-

turbances by which a wave can propagate itself in our medium without

subdivision. This surface, which may be properly styled the ellipsoid of

elasticity, must not be confounded with the one whose section by a plane

parallel to the wave's front gives the reciprocals of the wave-velocities,

and the corresponding directions of polarization. The two surfaces have

only this section in common, and a very simple application of our theory

would shew that no force perpendicular to the wave's front is rejected,

as in the ordinary one, but that the force in question is absolutely null.

Let us conceive a system composed of an immense number of par-

ticles mutually acting on each other, and moreover subjected to the

influence of extraneous pressures. Then if x, y, z are the co-ordinates of

any particle of this system in its primitive state, (that of equilibrium

under pressure for example,) the co-ordinates of the same particle at the

end of the time t will become x', y ', z, where x' y z are functions of x y z

and t. If now we consider an element of this medium, of which the

primitive form is that of a rectangular parallelopiped, whose sides are

dx, dy, dz, this element in its new state will assume the form of an

oblique-angled parallelopiped, the lengths of the three edges being

(dx), (dy), (dz), these edges being composed of the same particles which

formed the three edges dx, dy, dz in the primitive state of the element.

Then will

w -{(&"+ (2)' +(£)"}<*-*'
rl

suppose.

Again, let

o = cos <
(dz')

dx dx' dy dy' dz' dz

dy dz dy dz dy dz

^mW^Wi dx'\* id 11

T.)
+ US ' m

Q2
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dx' dx dy dy dz dz'

(dx') dx dz dx dz dx dz

d#' </#' e?y' </y' dz dz'

(dx') dx dy dx dy dx dy

V{U) +
(is)

+
{dx)\\{dy-)

+
S|)

+
Kdy)

or we may write

' _ / _ ftff dx dy dy dz dz

dy dz dy dz dy dz
'

., _ dx dx dy dy' dz dz'
/3
= «c/3= -7--7-+-7L -r- + j T-,ax dz dx dz dx dz

, j dx' dx' dy' dy dz' dz'
y = aby = -r- -T- + -f- -f- + -j— -v—.ax dy dx dy dx dy

Suppose now, as in a former paper, that
(f>
dx dy dz is the function

due to the mutual actions of the particles which compose the element

whose primitive volume = dx dy dz. Since must remain the same,

when the sides (dx
1

) (dy) (dz) and the cosines a, /3, y of the angles of

the elementary oblique-angled parallelopiped remain unchanged, its most

general form must be

<p
= Function (a, b, c, a, (Z, y)

or since a b and c are necessarily positive, also

a = be a, /3'
= ac/3, and y = aby,

we may write

<p=f(a\b\c* «',/3', 7'). (1.)

This expression is the equivalent of the one immediately preceding,

and is here adopted for the sake of introducing greater symmetry into

our formula?.
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We will in the first place suppose that is symmetrical with regard
to three planes at right angles to each other, which we shall take as the

co-ordinate planes. The condition of symmetry with respect to the plane

(;/x), will require <f>
to remain unchanged, when we change

,> into \ ,

But thus a\ J5
, c

1 and a evidently remain unaltered; moreover,

,\ become I ,

7 j I-7.

Hence we get

<{>=f(a\ b\ C\ a', (Z'\ 7'«).

Applying like reasoning to the other co-ordinate planes, we see that the

ultimate result will be

<p=/(a\ b\ c\ «", /r, ys

). (2.)

The foregoing values are perfectly general, whatever the disturbance may
be; but if we consider this disturbance as very small, we may make

X = X + u,

y'
- y + %

z' = K + w,

u, v and w being very small functions of x, y, % and t of the first order.

Then by substitution we get

• q^il (—Y (
dvX f_V, 1—

dx \dx) \dx) \dx)
"

'

., , rf« (du\
2

(dv\* idwV ,
bt = l +

*Ty
+

\dy)
+

Kdy)
+

(d*)
" * + * SUPPOSe-

(3.)
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, dv dw du du dv dv dw dw
"
dz dy dy dz dy dz dy

'

dz

1 _ du dw du du dv dv dw dw
~

dz dx dx dz dx dz dx dz

, _ du dv du du dv dv dw dw
'
~
dy dx dx dy dx dy dx dy

we thus see that s„ #2 , s3, a, /3', y, are very small quantities of the

first order, and that the general formula (1) by substituting the pre-

ceding values would take the form

cj>
= Function («„ s2, s3, a, /3', 7')

which may be expanded in a very convergent series of the form

<p
=

<p + <£, + 3 + <p3 + &c.

<p (f) { (pz &c. being homogeneous functions of s
{ ,

#a , *3 , a, ft, y of the

degrees 0.1.2.3 &c. each of which is very great compared with the

next following one.

But
(p , being constant, if p= the primitive density of the element, the

general formula of Dynamics will give

fffp
dx dy dz \~ |« + ~ %v +~ lw\ =

fffdx dy dz
(fy,

+ ty, + &c.)

If there were no extraneous pressures, the supposition that the primitive

state was one of equilibrium would require (p x
— 0, as was observed in a

former paper ; but this is not the case if we introduce the consideration of

extraneous pressures. However, as in the first case, the terms (p3 (p„ &c, will

be insensible, and the preceding formula may be written

fffp d* dy dz
j

— he + -^ It + -^ Sw
J

= fffdx dy dz
(ty,

+ %)



IN CRYSTALLIZED MEDIA. 127

Supposing p the primitive density constant, the most general form of 0,

will be

0i
= -

£ {As, + Bs> + Cs3 + 2Da + 2E(X + 2Fy'),

ABCDE and F being constant quantities.

In like manner the most general form of 2 will contain twenty-one co-

efficients. But if we first employ the more particular value, (2) we shall get

- 2 0!
= As, + Bs2 + Cs3

- 2 2
= Gs\ + Hs\ + Is\ + 2P*2 6'3 + 2Q*,s3 + 2Rs l si

+ La* + M(P+ ivy*.

Or by substituting for s1} s2 , s3 , a, /3', y their values, given by system

(3), continuing to neglect quantities of the third order, we get

- 2 = - 2 0,
- 2 2

~ jdu n -r>dv nr.dw= 2Aj- + 2B-r- + 2C-r-

ax ay a%

+ A

+ B

+

die)
+

[da;)
+

\dx) J

UduV (dv\
2

(dwy\
(4.)

„
(du\* „ (d#\

n

jtdwV 9 T>dv dw Q du dw
\dx) \dy) \d%) dy d% dx dx

ndudv , idv dw\ z M fdu dw\ 2 „
(du dvy

dxdy \dz lly) \d* dx) \dy dx)

Having thus the form of the function due to the internal actions of

the particles, we have merely to substitute it in the general formula of

Dynamics, and to effect the integrations by parts, agreeably to the method

of Lagrange. Thus,
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fffdx dy dx$(j) m

-ffdyd^ASu
+A^u + ^Jv +^w)

\ ax ay a%J \d% ax) \dy ax I J

-ffdxdz{Bh
+
B{^Su

+
(

^v +^w)

I -.du „dv n dw\ „ T jdv dw\ , ^rfdu dv \ » 1

V M ay as / Vass ay ) \ay ax) )

-ffdxdy{ciw
+C^u + fjv + ^Zw)

I r^du n dv r dw\ , T /a"?; «?W\ , -y r (du dw\ t 1

+
(
Q^ + P^ + /^^ + i U +

a>)^
+ iV te +^)H

+
///rf*%rf»l«|G

+^ + (N + B)
d

^+ {M + C)g

/\r r>\ ^** /o r\ d'W
]
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Neglecting the double integrals which relate to the extreme boun-

daries only of the medium, and which we will suppose situated at an

infinite distance, we get for the general equations of motion,

^df= {G + ^dP +{N + ^ay +{M+C) d¥

(5.)
d2v , xr .. d*v . r, „, d2 v . _ _ d2v

? M*-
= {N+ A^dW + {H + B

^df
+ {L + C) d*

dxdy
'

dy d%
'

d2w .,, j,d
2w

, /T n.d^w , T s^d
2w

p-d¥-= {M+A)^ + {L+B)W + {I + C) d^

If now in our indefinitely extended medium we wish to determine

the laws of the propagation of plane waves, we must take, to satisfy

the last equations,

u = of(ax + by + ex + et),

v = fif(ax + by + cz + et),

w = ^/(ttx + by + c% + et) ;

a, b and c being the cosines of the angles which a normal to the wave's

front makes with the co-ordinate axes, a, /3, 7 constant coefficients, and

e the velocity of transmission of a wave perpendicular to its own front,

and taken with a contrary sign.

Substituting these values in the equations (5), and making to

abridge

A'=(G + A)a2 +(N + B)b*+(M + C)c\

B=(N + A)a2 + (H+ B)b* + (L + Qc2
,

C - (Jf + A) a2 +(L + B)¥ + (I + C) c*;

Vol. VII. Part II. R
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B>'= (Z, * F)bc,

E'= (M + Q) ac,

F' = (N + R)ab\

we get

= (A'- e*)a + F'fl + E'y,

= F'a + (JT-/)/9 + ^7,

=.E'a + Z>/3 + (C- e>)y,

(6.)

These last equations will serve to determine three values of e", and three

corresponding ratios of the quantities a, /3, y, and hence we know the

directions of the disturbance by which a plane wave will propagate

itself without subdivision, and also the corresponding velocities of pro-

pagation. From the form of the equations (6), it is well known, that

if we conceive an ellipsoid whose equation is

1 = A'a? + B'f + CV + 2D'yz + %E'x% + ZF'xy* (7.)

and represent its three semi-axes by /•', r", and r", the directions of these

axes will be the required directions of the disturbance, and the corre-

sponding velocities of propagation will be given by

Fresnel supposes those vibrations of the particles of the luminiferous

ether which affect the eye, to be accurately in the front of the wave.

* If we reflect on the connexion of the operations by which we pass from the function

(4) to the equation (7), it will be easy to perceive that the right side of the equation (7) may
always be immediately deduced from that portion of the function which is of the second

degree by changing u, v and w into x, y and z.

«i d d
, d . ,

Also, -=- , -=- and -p- into a, b and c.
ax ay dz

This remark will be of use to us afterwards, when we come to consider the most general
form of the function due to the internal actions.
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Let us therefore investigate the relation which must exist between

our coefficients, in order to satisfy this condition for two of our three

waves, the remaining one in consequence being necessarily propagated

by normal vibrations.

For this we may remark, that the equation of a plane parallel to the

wave's front is

= ax + by + c%. (a)

If therefore we make

x = x' + a\,

y = y + b\,

% = z + c\,

and substitute these values in the equation (7) of the ellipsoid: re-

storing the values of

A', B, C, D, E', F,

the odd powers of \ ought to disappear in consequence of the equa-
tion (a), whatever may be the position of the wave's front. We thus

get
G = U = / = n suppose,

and P = n — 2L,

Q = /n- 2M,

R =
fi
- 2N.

In fact, if we substitute these values in the function (4) there

will result

- 20 = - 2^ -202
=

2A-j- + 2B-j- + 2C-j-ax ay dx

+ A i(du\* (dv\
2

(dw\
s

\

\{dx)
+

\dx)
+

Kdlc) j

R 2
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( (du dv dw\
2

•

+ M
{{die

+
Ty

+
rf^J

T \(dv dw\ 2 dv dw\
\ \dz dy ) dy d%\

__( (du dw\ 2 du dw\
\ \dz dx 1 dx dz J

,-{ /du dv\ 2 du dv\
\ \dy dx) dx dy)'

which, when = A, = B, = C, reduces to the last four lines.

Making the same substitution in the equation (7), we get

1 = n (ax + by + ex'f,

+ (A a
2 + Bb2 + Cc*) {x

2 + f+ *"), (8.)

+ L(cy - bzf + M(a% -
cx)

2 + N{bx -
ayf.

Let us in the first place suppose the system free from all extra-

neous pressure.

Then A = 0, B = 0, C = 0,

and the above equation combined with that of a plane parallel to the

wave's front will give
= ax + by + ex (9.)

1 =L(cy - bzf + M(a% - ex)
2 + N(bx -

ay)
2
,

the equations of an infinite number of ellipses which in general do

not belong to the same curve surface. If, however, we cause each ellipsis

to turn 90° in its own plane, the whole system will belong to an

ellipsoid, as may be thus shewn : Let (xyz) be the co-ordinates of any

point j) in its original position, and (x'y'%) the co-ordinates of the point

p which would coincide with p when the ellipse is turned 90° in its

own plane. Then
x2 + y

2 + z
2 = x'

2 + y'
2 + as'

3
,

since the distance from the origin O is unaltered ;

= ax' + by' + ess', since the plane is the same;

= xx' + yy + zz, since pOp'= 90°.



IN CRYSTALLIZED MEDIA. 133

The two last equations give

cJ^Tz
= ~^~^ =

bx-ay
= w SUPP°se -

Hence the last of the equations (9) becomes

o? = Lx'2 + My'
2 + N%\

But

x'
2 + y'

2 + z'
2 = w2

{(cy
-

b*y + (az - ex)
2 + (bx -

ay)
2

\,

m a,
2

{(b
2 + a2

) z
2 + (c

2 + a2

) f + (// + v
2

) of -2 (bcy% + abxy + acx%)\,

= w2

{(a
2 +b2+c2

)(x
2 +y2 + «

2

)
- {am + by + c%)* },

- w2

(«
c + y

2 + z
2

)
= x1 + f + »2

,

.: w2 = 1,

and our equation finally becomes

1 = Lx'2 + My 2 + Nz'2
. (io.)

We thus see, that if we conceive a section made in the ellipsoid to

which the equation (10) belongs, by a plane passing through its centre

and parallel to the wave's front, this section, when turned 90 degrees
in its own plane, will coincide with a similar section of the ellipsoid
to which the equation (8) belongs, and which gives the directions of

the disturbance that will cause a plane wave to propagate itself with-

out subdivision, and the velocity of propagation parallel to its own
front. The change of position here made in the elliptical section, is

evidently equivalent to supposing the actual disturbances of the ethereal

particles to be parallel to the plane usually denominated the plane of

polarization.

This hypothesis, at first advanced by M. Cauchy, has since been

adopted by several philosophers; and it seems worthy of remark, that

if we suppose an elastic medium free from all extraneous pressure, we
have merely to suppose it so constituted that two of the wave- dis-

turbances shall be accurately in the wave's front, agreeably to Fresnel's
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fundamental hypothesis, thence to deduce his general construction for

the propagation of waves in biaxal crystals. In fact, we shall afterwards

prove that the function
<p.2>

which in its most general form contains

twenty-one coefficients, is, in consequence of this hypothesis, reduced

to one containing only seven coefficients; and that, from this last form

of our function, we obtain for the directions of the disturbance and ve-

locities of propagation precisely the same values as given by Fresnel's

construction.

The above supposes, that in a state of equilibrium every part of

the medium is quite free from pressure. When this is not the case,

A B and C will no longer vanish in the equation (8). In the first

place, conceive the plane of the wave's front parallel to the plane (yz) ;

then a = 1, b — 0, c = 0, and the equation (8) of our ellipsoid becomes

1 = iux* + A (x
2 + f + z

2

) + Mz2 + Ny2
-,

and that of a section by a plane through its centre parallel to the wave's

front, will be

1 = {A + N)y* + (A + M) z
2

;

and hence, by what precedes, the velocities of propagation of our two

polarized waves will be

V'A + iV. The disturbance being parallel to the axis of y.

\/A + M. to the axis of x.

Similarly, if the plane of the wave's front is parallel to the plane

(xz), the wave-velocities are,

\/B + JV. The disturbance being parallel to the axis x.

y/B -t- L. to the axis z.

Or, if the plane of the wave's front is parallel to (xy), the velo-

cities are,

V C + M. The disturbance being parallel to x.

W+L y.
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Fresnel supposes that the wave-velocity depends on the direction

of the disturbance only, and is independent of the position of the

wave's front. Instead of assuming this to be generally true, let us

merely suppose it holds good for these three principal waves. Then
we shall have

N+ A = C + L, M + A = B + L and B + N = C+M;
or, we may write

A-L = B-M=C-N= V. (Suppose.)

Thus our equation (8) becomes, since a2 + b2 + c2 = 1,

1 = M (ax + by + ess)
2 + v (x

2 + y
2 + as

2

)

+ (La> + Mb2 + iVV) (of + y
2 + s2

)

+ L (cy
—

b%)
2 + M (a% -

ex)
2 + JV (bx — ayf.

But the two last lines of this formula easily reduce to

(M +N)x2 + (N+ L)f + (L + M)%2

+ L \a
2 x* - (by + c%)

2

} + M\b2

y
2 - {ax + ess)

2

}

+ iV {<?%
2 — (ax + by)

2

},

and hence our last equation becomes

1 = (v + M + N) x2 + + N + L) f + (v + L + M) «»

+ m (ax + by + ess)
2

+ L \a
2x2 -

(by + ess)
2

}

(11.)
+ M{b2

y
2 -

(ax + ess)
8

}

+ N{c2
z
2 - (ax + by)

2

}.

In consequence of the condition which was satisfied in forming the

equation (8), it is evident that two of its semi-axes are in a plane

parallel to the wave's front, and of which the equation is

= ax + by + ess, (12.)
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the same therefore will be true for the ellipsoid whose equation is (11),

as this is only a particular case of the former. But the section of the

last ellipsoid by the plane (12) is evidently given by

1 = (p + M + N) & + (y + L + JV) f + (p + L + M) %',

(12, 1.)
= ax + by + c%.

By what precedes, the two axes of this elliptical section will give
the two directions of disturbance which will cause a wave to be pro-

pagated without subdivision, and the velocity of propagation of each

wave will be inversely as the corresponding semi-axis of the section ;

which agrees with Fresnel's construction, supposing, as he has done, the

actual direction of the disturbance of the particles of the ether is

perpendicular to the plane of polarization.

Let us again consider the system as quite free from extraneous

pressure, and take the most general value of 2 containing twenty-one co-

efficients. Then, if to abridge, we make

du _ dv dw _ y
dx

=
%'

a*"
3 * (te~* ;

dv dw du dw _ „ du dv

d%
+

dy
=a '

d%
+ dx~P' dy

+ dx~ y'

we shall have

-
<h
= (f)r+ favv(rt£+'*tio*x + <ft)'er+'*<w&

+ («
2

) a
2 + (/3

2

) /3
2 + (7

2

) 7
2 + 2 ($y) /37 + 2 (ay) ay + 2 (a/3) afi

+ 2(«£)«e + 2(/3£)/3f + S(7f)Y£

+ 2(ari)ar) + 2 (fir,) Pi + 2(yr,)yt,

+ na^ai +
i(fip^+i(yt)y^

where (D (a
2

), &a, are the twenty-one coefficients which enter into 0,.

Suppose now the equation to the front of a wave is

= ax + by + ess.
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Then, by what was before observed, the right side of the equation
of the ellipsoid, which gives the directions of disturbance of the three

polarized waves and their respective velocities, will be had from
<pi} by

changing u, v and w into x, y and % ;

also -j- ,
— and -=- into a, b and c.ax dy d%

We shall thus get

1 = Ax2 + By* + Czr + 2 Dyz + 2 Ex% + 2 Fxy.

Provided

A = (?) a
2 + (/*) c2 + (7

2

) ¥ + 2 Q37) Jc + 2 (f)3) «c + 2 (£7) aJ,

B =
(rf) ¥ + (a

2

) C« + (7
2

) «
2 + 2 (a7) dC + 2 (ijoj &C + 2

(»/7) a J,

C =
(£

2

) c2 + (a
2

) J
2 + (/3

2

) a
2 + 2 (a/3) a J + 2 (£a) ic + 2 (£/3) ac,

D= (^)bc + (a
8

) £c + (j37) a
2 + (a/3) «c + (ay) ab

+ (ar,)b* + (a£)c? + ((Sr,)ab + (y%) UC,

E =W ac + (/3
s

) ac + (ay) ¥ + (a/3) be + (/37) ab

+ 03f) «2 + OD c8 + (« D «& + (7D
f
c,

F =
(f„) «& + (7

2

) ab + (a/3) c
2 + (a7) ic + (/37) ac

+ (7?) a
2 + (7,) 62 + (a £) ac +

{(ir,)
be

But if the directions of two of the disturbances are rigorously in

the front of a wave, a plane parallel to this front passing through the

center of the ellipsoid, and whose equation is

= ax + by + c%,

must contain two of the semi-axes of the ellipsoid; and therefore a

system of chords perpendicular to this plane will be bisected by it;

and hence we get

= (A - C) ac + E (c
2 -

a-) + Fbc - Dab,

= (B- C)bc + J)(c
2 -

b*) + Fac-Eab.
Vol. VII. Part II.
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Substituting in these the values of A, B, &c, before given, we shall

obtain the fourteen relations following between the coefficients of a ,

viz.

o = (a^, o = oa o = (7a
=

(«£),
= 08ft =

(7 ,) f

(«?)
= - 2 (/37 ), Ifa)

= - 2 («7), (7 = - 2 (a/3),

(P) = W = (D = 2(«
2

) + 0?D = a 09-) + (ft)
= 2(7

2

) + 00l

Hence, we may readily put the function
<p2 under the following

form :

(f) (? + «! + D2 + («
2

) i«
2 - 4 ^1 + (/3

?

) (/3
2 - * £D

+ (7
2

) (7
2 - 4^) + 2(/37) (07 - 2 «£)

+ 2(«7)(« 7 -2/3^) + 2 (a/3) (a/3
- 2 7 0,

or by restoring the values of f, >?, &c, and making G =
{$?) L = (a

8

) &c,
our function will become

„ (du dv dw\ 2

T j
(dv dw\~ dv dw

\

\dx dy dz) \ \dx dy I dy d%\

__ i (du dw\ 2 .du dw\ ^.[(du dv\ s du dv\

\\dz dx) dx dz) \\dy dx) dx dy)

pf tdu dw\ (du dv\ du (dv dw\ 1

\\dz dx) \dy dx) dx \zd dy)\
(12.)

„J/c?u dw\ (du dv \ dv (dti dw\\

\\dz dy) \dy dx) dy \d% dxlj

pUdv dw\ (du dw\ dw (du dv
\\

\\d» dy) \dz dx) dz \dy dx))''
+

and hence we get for the equation of the corresponding ellipsoid,

1 = G {ax + by + c&y + L(bz — cyf

+ M(a% - cxf + N(ay - bxf + 2P(cx - az)(ay
-

bx)
(13.)

+ 2 Q (bz
—

cy) (ay
—

bx) + 2 B (bz — cy) (ex
-

az).
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But if in equation (8) and corresponding function (A), we suppose
A = 0, B = and C = 0, and then refer the equation to axes taken

arbitrarily in space, we shall thus introduce three new coefficients, and

evidently obtain a result equivalent to equation (13) and function (12).

We therefore see that the single supposition of the wave-disturbance,

being always accurately in the wave's front, leads to a result equivalent
to that given by the former process ; and we are thus assured that by

employing the simpler method we do not, in the case in question,

eventually lessen the generality of our result, but merely, in effect,

select the three rectangular axes, which may be called the axes of elas-

ticity of the medium for our co-ordinate axes. From the general form

of 0, it is clear that the same observation applies to it, and therefore the

consequences before deduced possess all the requisite generality.

The same conclusions may be obtained, whether we introduce the

consideration of extraneous pressures or not, by direct calculation. In

fact, when these pressures vanish, and we conceive a section of the ellipsoid

whose equation is (13) made by a plane parallel to the wave's front, to

turn 90 degrees in its own plane, the same reasoning by which equation

(10) was before found, immediately gives, in the present case,

1 = Lx'2 + My'
2 + Nz'2 + 2 Py'z' + 2 Qx'z + 2 Ra'y' (14.)

for the equation of the surface in which all the elliptical sections in their

new situations, and corresponding to every position of the wave's front,

will be found.

Lastly, when we introduce the consideration of extraneous pressures,

it is clear, from what precedes, that we shall merely have to add to the

function on the right side of the equation (13) the quantity

(Aa
2 + Bb2 + Cc2 + 2Dbc + 2Eac + 2 Fab) (x

2 + f + z2

),

which would arise from changing u, v and w into x, y and as. Also -r- , -r- ,

-j-
into a, b, c, in that part of

(p x which is of the second degree in u, v, w,

agreeably to the remark in a foregoing note. Afterwards, when we
S2
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determine the values of A, B, &c., by the same condition which enabled

us to deduce the system (12, 1), we shall have, in the place of this

system, the following:

1 = K(a* + if + O - \La? + My2 + iW + 2 Py% + 2 Qxx + 2 Rxy\. .

(15.)
= ax + by + ex,

which is applicable to the more general case just considered.



VIII. On a Portion of the Tertiary Formations of Switzerland. By
D. T. Ansted, Esq. M.A., Fellow of Jesus College. Fellow of
the Society and of the Geological Society ; Professor of Geology
in King's College, London.

[Read May 20, 1839.]

The Tertiary formations of Switzerland are singularly deficient in

most of those points which have rendered the contemporaneous deposits in

other countries of Europe so attractive and important. The beds, for the

most part, vary Jbut little in mineral structure : they seem to have been

accumulated rapidly, and under circumstances little favourable to the

preservation of organic remains, and the few fossils that are known to

occur, possess none of that definite character, which elsewhere indicates

with sufficient clearness to what well-known group the one in question

was anterior, and what beds were anterior to it. Owing, perhaps, to this

want of determinate character, and partly, also, no doubt, to the superior

interest of the strangely contorted secondary beds, which form the

principal mass of the great mountain district always within sight, it

has happened that travellers in general have neglected to examine care-

fully the great valley of Switzerland, and I am not aware of any detailed

account in our own language of so considerable a portion of European

Tertiary Geology.

I am not able, indeed, myself to add much to the small amount of

our knowledge on this subject, but anxious at all events to direct atten-

tion to it, I have ventured to lay before the Society a few observations

made during a stay of several weeks at Lausanne, in the summer of 1838.

In order to do this most effectually, I shall first consider the nature of



142 PROFESSOR ANSTED, ON THE

the Tertiary beds occurring in what is called the Great Helvetic Basin,

and occupying the space between the High Alps and the Jura chain.

I shall afterwards proceed to remark upon the various smaller basins met

with in the Jura district itself, and partially rilling up the valleys be-

tween the different ranges of that mountain chain.

From whichever side Switzerland is entered, whether from France,

Germany, or Italy, no traveller, not even the most indifferent about

geological phenomena, can have failed to notice the physical structure of

the country, or the effect to the eye of that series of deposits concerning

which I am about to speak. The high range of mountains to the South,

nearly terminated at each end by the two highest of the European

mountains, Mont Blanc, and Monte Rosa—the continuation of these

lofty eminences toward the North-East, forming the "
High Alps," and

extending into the Northern Cantons of Switzerland—the less lofty but

still considerable elevations running parallel to this principal range in

the West of Switzerland towards France, and known as the "Jura"

chain—all these very remarkable and strikingly beautiful mountain chains

surround a tract of land comparatively level and rich in every thing

that can administer to the wants or luxuries of man ; and it is this

cultivated district, this comparative plain in a land of mountains,

which marks out the extent of the Swiss Tertiary deposits, and has

hitherto been, as I observed, almost neglected by the geologist. It

requires, perhaps, to have been on the spot to understand the tempta-
tion offered by the near proximity of such mountains; but those who
have been there, and have hurried on with all the enthusiasm and ex-

citement of novelty to breathe the pure and exhilirating mountain air,

will wonder but little that the plains have been neglected, and that the

Tertiary Geology has given place to the Alpine.

It was hardly an effort of philosophy which induced me to labour in

the less trodden field :—a conviction that I could not hope to make much

way where so many and far superior and more practised geologists had

preceded me, may indeed have induced me the more readily to be contented

in a less distinguished sphere, but my expeditions from Lausanne were

necessarily short, and my opportunities limited.
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Thus circumstanced, my observations will be found to relate chiefly to

the South-Western part of the Helvetic Basin, and not at all to the more

interesting portion extending Northwards and Eastwards from Berne,

and already somewhat minutely described in a work, published in 1825,

by Professor Studer, of Berne. My excursions were, as I have said, con-

fined to a small part of the Canton of Freyburg, and the greater part

of the Pays de Vaud. The limit of this district to the South is the

lake of Geneva. The Eastern and Western boundaries are sufficiently

defined by the abrupt elevation of mountains, forming the flanks of the

High Alps on the one side, and of the Jura on the other.

The high road from Freyburg to Vevey is nowhere at any great dis-

tance from the line which separates the tertiary beds from those secondary
ones upon which they lie uncomformably, but the actual junction at any

point I did not perceive, as the country is for the most part covered

up, and the geological phenomena obliterated. Close to Vevey, however,

in a valley cut by a small stream coming down to the lake, we obtain

a glimpse of the extreme tertiary beds to the East, and it will be perhaps
best if, commencing with these, we trace the collocation of the beds as

they are exposed on the North side of the lake of Geneva, and mav
be observed in travelling from Vevey towards Lausanne and Geneva,
westwards.

Close to the town of Vevey there occurs a hard conglomerate, very
coarse where it rests on the older rock below, but becoming gradually

finer, until after a few miles it is replaced by a very fine sandstone, which

spreads over the whole centre of the valley of Switzerland, and is the great

tertiary deposit of which I have chiefly to speak. Of these beds, the coarser

conglomerate is known generally by its German designation,
"
Nagelfluhe,"

while the nature and peculiarities of the finer sandstone (which is the

most widely spread and extensive of all the European Tertiaries) are in-

dicated in the name "
Molasse," by which the soft, incoherent tertiary

sandstone of this country and Germany is designated.

The thickness of the Nagelfluhe is various, but never very great. From

near Vevey it may be traced towards the West for about a couple of

miles, gradually becoming a finer deposit, and imperceptibly changing
into the Molasse, without any definite line of separation.
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It would be extremely difficult to lay down the limits of this bed

with accuracy, although the thickness cannot be any where very great ;

I could not discover a single spot where the dip could be taken, but as

the whole seems to have undergone a change of position by disturbances

connected, doubtless, with the uplifting of the mountain chain, no single

observation of this kind, even if it were made, could possess much value

in the way of determining the mass of the deposit.

On the other hand, the thickness of the Molasse, although equally

difficult to determine, must be enormous, and if calculated in the ordi-

nary way, allowing for its being repeated once or twice by faults, will still

appear almost incredible. Extending across the valley of Switzerland for

nearly five and twenty miles, and inclined often at angles varying from

15 to more than 50 degrees, rising sometimes into hills four thousand feet

above the sea-level and more than two thousand above the general level

of the country, we cannot escape the conclusion that it is a mass of

vast thickness, even after making every allowance for the effects of dis-

turbance.

I am inclined, however, to think that much of this appearance of enor-

mous thickness is owing to the deposit having been formed on a consider-

able slope, and not on a horizontal or nearly horizontal plain, and that thus

its almost uniform inclination is not owing entirely to disturbances of

the substratum, but also to the circumstances of deposition. If we imagine
the formation to have been commenced when the level of the valley

of Switzerland was below that of the sea, and that sandbanks rapidly

formed on a shelving coast at some distance from the shore, were gradually

raised by successive small elevations, and afterwards when the general level

of the land was above that of the sea, that the elevations had gone on

from time to time till the present state of things was produced, we
should have very similar phenomena presented to view, viz. an enormous

mass of sandstone, appearing to possess a dip that would multiply its real

thickness tenfold, and ranges of hills at some distance from the former

coast-line.

The main difference between the Nagelfluhe and the Molasse, consists

in the mechanical difference between a coarse conglomerate and a fine sand-

stone, but interstratified with the Molasse there occur here and there beds
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of lignite, which add much to the geological interest and something to the

economical advantages of the district under consideration. There is also

found in the West of the Canton of Vaud, not far from the lake of Neu-

chatel, a white building-stone containing much calcareous matter in its

composition, but circumstances prevented me from paying that attention

to so interesting a stratum which it well deserves from the geologist. It

will be found forming a hill close to the little town of Thierrens, and I

observed it in one spot dipping about 40 degrees to the South-West*.

Having thus described the mineral composition of the different strata

observed, I come now to speak of the general outline of the country, and
the deductions to be drawn from considering the physical features produced

probably by disturbances acting after the beds had been deposited.

Although, in comparison with the stupendous chain of the Alps, the

central and more cultivated portion of Switzerland is properly designated
as a valley, yet even in this valley there occur eminences which in a

more level country might well be called mountains. About five miles

from Vevey, and to the west of the coarse conglomerate called Nagelfluhe,
there rises a hill of Molasse to the height of nearly 4000 feet, and a chain

of hills may be observed extending from this (which is called the Tour de

Gourze) towards the North-East, whose heights are successively, 3000,

4000, and 3500 feet above the sea. In speaking of these altitudes, how-

ever, it must not be forgotten, that the level of the lakes of Geneva and

Neuchatel is considerably more than twelve hundred feet above the sea, and

thus the hills do not in reality form such striking features in the landscape
as others of no greater actual elevation, but rising from a lower plateau,

in other countries, and under different circumstances. Imbedded in the

sandstone of which these hills are composed, there occurs in the line of

the hills, and about ten miles North of Vevey, one of the beds of lignite

already alluded to, and we are enabled accordingly to determine the dip

with some accuracy, at all events in this spot ;
I observed that it was very

considerable, certainly more than 50°, and its direction variable, though on

the whole Easterly, being here, and in one or two other places along the

line, towards the South-East, in a few others North-East, and some-

times nearly due East.

* This would appear to be a local deviation from the general dip of the district.

Vol. VII. Part II. T
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If leaving the chain of hills just alluded to we advance along the

banks of the lake of Geneva, towards the West, we come to a parallel but

less elevated chain, beginning about ten miles from Vevey, near the town

of Lausanne, forming a ridge of sand-hills whose summits are about 2500

feet above the level of the sea, and the ridge continues at nearly the same

elevation for a distance of at least 15 or 20 miles to N. E. Here, as

before, the dip is towards the South-East, and generally as much as 45°.

Between Vevey and Lausanne another bed of lignite of some thick-

ness is worked. The bed is exposed in consequence of a mountain torrent

having cut its way through the Molasse, close to the spot where the

lignite crops out to the surface. It is thus worked in chambers, from the

right bank of the stream to the outcrop, which is at no great distance.

If we return now, and continue our course along the banks of the

lake still further to the West, we shall find a third time indications of

a similar North and South range, commencing at a celebrated point de vue,

called the Signal of Bougi, from which may be enjoyed one of the most

beautiful and picturesque prospects in this part of Switzerland. The
chain of hills commencing here, is continued at an elevation of little less

than 3000 feet for many miles, parallel to the mountains of the Jura.

In several places the dip of the Molasse may be observed in the neigh-

bourhood of this, as of the other parallel lines of elevation, and is generally

South-East. The opportunities however of obtaining dips are so very

rare, and except where the lignite occurs, the bedding so obscure, that

if it were not for the uniformity wherever the inclination can be clearly

made out, I could hardly venture to lay much stress on a series of observa-

tions, so few in comparison with the large extent of country over which

they are spread.

On the whole, however, we seem to have in this Southern portion of

the Molasse of Switzerland, three distinct and tolerably well-marked lines

of elevation, all parallel to the mountain chain of the Jura, from which

also they all dip. The upheaving of this latter chain (the Jura) subsequent
to the formation of the High Alps, seems to have been the means by which

the peculiar physical features of these tertiary beds were in a great

measure produced. Doubtless there have been great changes effected

by the action of the elements upon beds so soft, and often almost inco-
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herent; but still the great amount of dip considered in connection with the

parallel ranges alluded to, gives us sufficient reason for referring to elevations

as the original causes of the more remarkable phenomena.

The Tertiary Geology of Switzerland is but little assisted by the

consideration of those organic remains which are peculiar to, or discovered

in the various beds. The Molasse is so exceedingly barren of fossils,

that during many weeks which I spent in the immediate neighbourhood
of great natural sections of it, I did not on any occasion find a single

specimen indicating organic structure. The Northern beds are, however,

rather more prolific, and offer sufficient evidence that this vast mass of

sand was accumulated under sea-water. There is a list of fossils in the work

by Professor Studer, already alluded to, which includes the following

marine genera,
—Mactra, Cytherea, Cardium, Pecten, Trochus, Cassis,

Terebra, Buccinum, and Conus. These were most of them found in various

parts of the Cantons of Zurich and Lucerne.

Although, however, the general character of the bed, as well as

the discovery of such a series of fossils, would induce us to place the

whole formation among marine deposits, yet with regard to the bands of

lignite, the evidence is so entirely the other way, and points so clearly

to a fresh-water origin, that I think the only way of reconciling the

apparent anomaly is to suppose the former existence of considerable

streams rushing down from the mountains, and bringing with them vast

quantities of vegetable, intermixed with some animal remains, which

might be deposited at the mouth of a river in consequence of a bar,

or extensive sandbank.

The shells found in the lignite, and embedded in the sandstone

immediately adjacent, are chiefly Helix, Planorbis, Lymncea, and Unio ;

but the specimens are so much broken, that the exact species can hardly

be determined. Besides these, I was fortunate enough, on one occasion,

to discover a portion of the sternum of a chelonian reptile, probably a

turtle, although such fossils are, I believe, extremely rare, and I did not

hear of any other remains of Reptiles during my stay in the South of

Switzerland. The lignite is generally hard with a clean conchoidal fracture

and brilliant lustre, and is a good deal used for fuel. It is met with in

T 2
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beds several feet in thickness, but not extending far in any direction ;

and these beds alternate usually with thin marls, which are often quite

white in consequence of the enormous abundance of crushed shells

belonging to land and fresh-water species, which often completely hide the

marl, and cover the surface of the lignite.

SECTION I. ACROSS THE GREAT VALLEY OF SWITZERLAND.

Level oj Lake of Gtnna.

Level of the Sea. scale of dUlancet i of an inch i

.... 7 , . i to a mile,

of heights .}
inch >

From the annexed section some idea may be formed of the relative

positions and magnitude of the three lines of elevation already alluded to

as existing in the Molasse, and the place which the two beds of lignite

occupy : the dips are principally towards the East, and more or less

with a Southerly tendency, but the amount varies, and is, I think,

generally most considerable in the neighbourhood of the High Alps,

towards which the strata incline.

I have now only to add a few words more on this part of my subject ;

viz. to point out, so far as 1 am able, what remains to be done for the

more complete illustration of the Tertiary Geology of Switzerland.

In the first place, there occurs a question of great interest, and one

which requires, probably, very accurate research to determine: viz.

whether the lines of elevation to which I have directed attention were

really caused by upheaving forces, or merely by denudation—whether,

in a word, there are lines of fault, or anticlinal axes, corresponding to

the lines of elevation. In the next place, it would be extremely interesting
to identify, if possible, the two beds of lignite

—a task which I was

unable to perform ; and lastly, it is possible that, barren as the sandstone

is of fossils, some may yet be discovered, by which we may declare

with certainty the actual geological age of the formation. With regard
to this latter point, I shall have a few words to add at the conclusion of
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this paper, and must for any further information refer to the work already
alluded to, published at Berne by M. Studer.

Quitting the wide expanse of the great Helvetic Basin, I wish next

to direct attention to the circumstances connected with the tertiary

valleys of the Jura, and more particularly to the valley of la Chaux de

Fonds, which may serve indeed as a type of the rest.

The villages of la Chaux de Fonds and le Locle, at the two extremities

of the same valley, are the richest, the most populous, and, in some respects,

the most remarkable of any in Switzerland. They are situated near

the frontier of France, one in the Northern and the other in the Southern

part of a valley which is about ten miles long and one broad, extending
in a North-Easterly direction, at an elevation of more than two thousand

feet above the level of the sea. There is no outlet to the valley for drainage
at either extremity, and its general appearance, as well as geological

structure, show clearly that it was formerly the bed of a mountain lake,

resembling in all probability those still existing in the Jura, such as the

Lac de Joux, the Lac de St. Point, and one or two others. As I first

visited la Chaux de Fonds from Neuchatel, and afterwards entering

the valley at its South-Western extremity, passed le Locle and again

reached the village on my journey Northwards, I will first describe

in a few words the section across the Jura, and then the peculiarities

which present themselves in tracing the beds in the direction of the

valley's length.

SECTION II.

Level ofthe Sea,

ACROSS THE PRINCIPAL RANGES OF THE JURA.
Ttte it Rang:

City i

VaUengy. ^^^ of ft

Scale i inch to a mile.

City and hake
NeucMtel.

Immediately on leaving the town of Neuchatel the road begins to

rise, although the passage across the first range of the Jura is rendered more

easy by its following the course of a transverse valley, which brings

a mountain torrent from the first and most Easterly valley to the lake

of Neuchatel. The naked walls of rock exhibited on each side of the

road show clear marks of the violent dislocation which must have accompa-
nied the upheaving of the mountain chain, and we can trace easily the
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direction of the anticlinal axis, and the contortions of the strata near the

highest part of the range. The descent on the Western side is rapid

but not very long, and brings us quickly to the little town of Vallengy,

which is built upon a considerable bed of gravel, the superstratum of

a valley, without doubt, of tertiary formation. The valley thus covered

up is a fair specimen of many of those occurring between the two most

Easterly parallel ranges of the Jura : they are for the most part desolate

and barren, now and then watered by a small stream, but then only present-

ing a little pleasing scenery close to the water's edge. I should imagine

that they had been formed rather by the action of submarine currents

depositing gravel, than by any regular subsidence of transported matter

in a lake.

Crossing this valley, whose breadth is here nearly two miles, we come

again to the secondary rocks of the Jura, and the road passes over the middle

and highest range of those mountains. At a very high elevation, and en-

closed between two ridges of nearly 4500 feet, occurs a second small valley,

much more narrow and insignificant than the one before mentioned ; and

after having crossed it, there is a sudden and rapid descent, leading down to

the third and principal valley, that of la Chaux de Fonds, the examination

of which was the main object of my excursion. In physical features, as well

as geological structure, this valley has all the character of a lacustrine

deposit, left dry, either by the silting up of a mountain lake, or gradual

evaporation for want of a sufficient supply of water. There is certainly no

outlet for water, and scarcely a single running stream in its whole extent.

The village of la Chaux de Fonds is near the northern extremity of the

valley, and about midway between the mountains on the east and west. It

is built partly upon a small bed of clay and marl, marked (a) in Section 8,

SECTION III. ACROSS THE VALLEY OF LA CHAUX DE FONDS.

Jura.
Juea.

If!'

Level of the Lake of NeucMlel Scale 2 inchei to a mile.
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and partly upon a fresh-water limestone, the upper beds of which alternate

with the marls above. On each side of this band of limestone, marked (b),

there comes out another series of marls (c), resting upon the Molasse (d)

which is here of no great thickness, and overlies a portion (probably the

lower part) of the chalk formation {e), immediately below which in this

part of the district are the upper oolite beds of the Jura (y).

In the uppermost of all these beds, resting on the fresh-water limestone,

there have been discovered, in digging foundations for houses, several frag-

ments of bones, among which were teeth in tolerable preservation. These

bones, being examined by competent anatomists*, have been referred to the

following genera :—Anoplotherium, Palceotherium, and Lophiodon, Hippo-

potamus, Camelopardalis, Equus, Deinotherium, Elephas, and Rhinoceros.

To the bed containing these fossils, and the circumstances under which they

occur, I am desirous now of directing attention.

The bed I have already sufficiently described as a black earthy deposit,

alternating with calcareous bands. It is pretty regularly stratified, and I was

struck with the probability there seemed of its having been formed while

the lake, which doubtless once covered the whole valley, was so far dried up
as to resemble a marshy pond, in which the bones would be preserved as in

a peat bog. Of the species determined, I believe five have been identified

as occurring also in the Paris Basin ; the others would seem to belong to a

more recent period, and perhaps we should rather refer to the tertiary beds

of Bordeaux, and the valleys of the Garonne and Loire, than to the neigh-

bourhood of Paris for analogies. The Miocene period of Mr Lyell has

already been suggested by that gentleman as the probable date of the Jura

tertiaries, and the discovery of these fossils would tend to confirm his

opinion.

The Molasse, however, being the substratum, and resting immediately

upon the cretaceous beds, it is clearly an older deposit, perhaps existing
as the bottom of an ancient sea, before the disturbances and elevations,

which formed the valleys of the Jura, and raised them to their present

position, took place.

* Most of the specimens were determined by Professor Agassiz, and many of them sent to

Paris to be compared with the fossils examined and named by Cuvier, and found in the Lower

Tertiary formation of the Calcaire grossiere.
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In conclusion, the Tertiary Geology of the South-West of Switzerland

may be said to be separable under three heads ; first, the great deposit of

Molasse, which appears, from all we can tell, to be of marine origin; secondly,

the fresh-water marls and lignite bands occurring in the Molasse, but very

local, and apparently near the upper part ; and thirdly, the overlying beds of

marl and limestone in the valleys of the Jura, which alone can be compared
with the better developed systems in other parts of Europe; but since, from

the general dip of the sandstone, that portion of it in the Jura valleys would

seem to have been the earliest formed, there is no reason why the overlying

beds there should be very much newer than the lignite near the Alps. The

period therefore to which the Molasse must be referred, still remains in

doubt. It also results from the dips and observations recorded, that the so

called great Helvetic Basin is in fact no basin at all, but a vast accumula-

tion of sandstone, formed probably upon an inclined plane, and then tilted

to a greater or less angle into its present position. The smaller valleys are

indeed true basins, but the structure of many of them, especially the most

Easterly, is a point, I think, yet to be determined.

It is obvious that much remains to be done in determining the true

geological relations of the Molasse, its fossils, and the varieties of its dip ;

and I would especially direct attention to the limestone near the Southern

extremity of the lake of Neuchatel, which is the most promising of

any part of this tiresome formation. Should there be found here any

fossils, they must possess great interest; and I regretted extremely the

want of opportunity which prevented me from examining accurately

the whole neighbourhood. It is very accessible, being close to the high road

between Yverdon and Moudon, and certainly deserves the attention of any

geologist travelling in that part of Switzerland.

Should anything I have said lead to the determination of this and other

points in Swiss Tertiary Geology, my object in bringing this paper before

the Society will be fully accomplished.

D. T. ANSTED.
Jesus College,

March 1841.
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From the remarkable appearances presented by the interception of a

part of the light proceeding from a small luminous body towards the object-

glass of a telescope, it may very naturally be supposed that vibrations are

suffered to exist, which would otherwise be destroyed by interference ; and

that consequently a less quantity of light is stopped by the grating than

that which is actually incident on it. That light actually appears from the

application of the grating, where there would be little or none without it,

is most certain ; and that this circumstance arises from the want of inter-

ference, alluded to above, there can be no doubt. Should we then expect,

notwithstanding the cause to which we attribute the phenomenon, (not to

speak of the phenomenon itself) to find exactly the same quantity of light

on the other side the lens, or at least in its field of view, as would corre-

spond to the spaces left open by the grating ?

When first asked my opinion on this subject, I had no hesitation in pro-

nouncing that, previous to calculation, I should expect to find more light

transmitted through a grating, than in proportion to the space left un-

covered. My idea of the matter was this : certain vibrations are not

destroyed when the grating is applied, which would be destroyed in the

contrary case ; whereas there is nothing to affect those spaces from which

vibrations are excluded, so as to render this nugatory. This reasoning,

subsequent consideration convinces me is incorrect. It appears that, although

the stoppage of vibrations by the wires does bring into operation that

Vol. VII. Part II. U
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which must otherwise have been destroyed, yet the same stoppage causes to

disappear certain of the vibrations corresponding with the uncovered part,

which would, in the contrary case, appear in the aggregate of all the

motion.

My attention was called to this subject by Professor Forbes, who
has been prosecuting an experimental enquiry into the effect produced

by screens on the transmission of radiant heat. The curious fact which

he has established relative to the difference in amount of the stoppage

produced in light and dark heat,—or at least in two different kinds of heat,

which he has found to be operated on very differently in other matters—
promises to give us an insight into the characteristic properties of light

and heat, provided it appear that one kind of heat is, in the case before

us, acted on in the same manner as light is, in like circumstances. But

perhaps it is too much to hope that we shall distinguish betwixt light

and heat, uncertain as we are of the intensity of the former, by which

its nature might be contrasted with that of the latter. It may then be

expected, rather, that we shall be put in the way of distinguishing between

heat and undulations ; distinction being, if I mistake not, absolutely

necessary, as well as obviously pointed at, by the very experiments which

seem most strongly to identify the two with each other.

I forbear, however, entering on this subject at present, although I

am deeply interested in it, as well on account of its intrinsic importance, as

of its bearing on my own views of the Theory of Heat. I shall therefore,

without further preface, proceed to the question in hand.

Our Problem is this :
—

A series of equal parallelograms are placed before a lens, to find the

whole quantity of light received on a screen, placed perpendicular to the

axis of the lens at its focus.

The solution of the Problem for rinding the intensity at any one in-

dividual point will be found in Airy's Tracts, p. 328, at the foot of

Art. 83.

The expression is this :

'!/
2

(

p (e + g) 7T

sin t—-—
r-
5— m <

2nqf Xb J Wpe \b I
\
T p (<? + g) n
sm

Xb
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The notation is as follows :

e is the breadth of one of the openings between the wires ;

g the breadth of a wire
;

p, q the co-ordinates of the point, measured along the screen from the

focus of the lens,

p being perpendicular to the wires ;

m the number of openings and of wires.

To obtain the whole quantity of light, then, we must multiply this

expression by 4:dpdq, and integrate between the limits and oo .

Let the result of the integration for q give

He* r»i /sin aV/
01"

V e)
sin 1 1 + -

1 mx\

w r*p (nr) . / V\ )
by writins * forw

\ sin 1 + -
)
x I

Then dp = — dx, so that the expression becomes
ire

He Cdx (*™-Z)'
(
^rmx

y f _ g
J \ x J \ sin rx I e

1. Now first, we must integrate this expression on the hypothesis that

the aperture is uninterrupted, or that m — 1. I shall make use of the well

known formula of Laplace : viz.

/
» a cos qx .dx _ir _ aq

a? + x* 2

the particular value of a being 0.

Thus r^-fJo xi 2a
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Supplying these values, we obtain,

1 r" v 1 — cos 2x

fM5
*
5
) -if*3

a?

7T= —
(1
— e' ia

), a being always =

7T

2
;

. •. the intensity on this supposition is He —
, or as we will write it, to

denote that e stands now for the semi-aperture, HE
TV

We find then, that the whole quantity of light incident is exactly

that which corresponds to the open space between the bars, no effect

being produced by interference, or its destruction.

2. Next, as a particular case, in order to make the process intelligible,

we will find the illumination when the breadths of the wires are equal

to the openings between them.

If, for instance, there be two wires, the general formula gives

J \ x ) Vsin %xi

„ r» fsmx\
8

. , „ ,= He (—— I 4cos 2 2#a#

= 4iHef — (sin 8
a; — 4 sin 4

a; + 4 sin 6

a?)

= 4 He f -, (- — ;rCOS 2x + tcos 4>x - -cos 6x )
Jo x* \4 8 4 -8 /

-*ra.(*-i+§)
= it He.
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But e = - E ; since the original aperture is divided into four equal parts,

two of which are appropriated to the openings, and two to the wires.

.-. The intensity =
^
HE

= - the result found for the intensity when there are

no wires.

3. Thirdly, let us retain the hypothesis, that the breadths of the

wires are the same as the openings between them, but suppose the number

of wires and of openings to be any number whatever, (m).

Write — , for sin x:
2v/- 1

then the expression (sin xf r
1

? |~j
is put under the form,

1
(0 fl-«Y (

** - *""V

"
1 \ e + e- 1

)
'or

Let
(^
—

^-J
= oofl

4—•+ «!0
4m - 4 + &c.

+ a4m - 2 0-
(4m - rt

;

.-.
4"1 - 2 + 0" 4m =

O
4 "' + a1

,"-* + 0,0*—*+ ... + a4m-20-
(4m_4)

+ 20o

4"" 2 + 2«1

4'"- 4 + ... + 2a4m . 2 0-
u'"- 2)

+ OO0
4— 4 + ... + atm -z0-

im
;

from which we obtain by equating coefficients,

1 = 00,

= 0,+ 20o>

= 2 + 20*1 + 0o,

= 03 + 202 + 0„



158 PROFESSOR KELLAND, ON THE

— 2 = ttim + 2ftgm -i + (tin _2,

2(l lm -;; + W4m _3,

#4m-2 = !•

These results give

a
Q
m 1, «! = -

2, «2 = 3, «3 = — 4, &c.

asm., = — 2m, «2m = — 2 + 4m — 2m + 1 = 2m —
1,

<W, = - (2m -
2) &a «4m _ 8

= -
2, a4™-a = 1-

By substitution, therefore, the general expression

tt r°= t /sin #\ 2 /sin rmx\
%

,

iie / d# .
— becomes

Jo V x ) \ sm rx 1

— 2 {cos (4m — 2) x — 2 cos (4m - 4) x

+ 3 cos (4m — 6) x — &c + (2m — 1) cos 2x - m\

or _ I **± ic-««-»« _ 2 e-(««-«« + se-w»-«« _ &c . + (2m -
1) e"*" - nl

4 « l

But 1 - 2 + 3 - &c. + (2m -
1)

- m =
;

•. the expression gives ; observing that a = 0,

+ r-H>(4m- 2 - 2 4m- 4 + 3 4m - 6 - &c. + 2m - 1.2).
4

Now 4m - 2 - 2 (4m -
4) + 3 (4m - 6)

- &c. + (2m -
1) . 2

m 4m {1
- 2 + 3 - &c. + (2m -

1)}

- 2 {I
s - 22 + 32 - &c. + (2m -

l)
2

}

= 4m2 — 2m (2m —
1) = 2m.
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Hence the expression becomes

- Hem:
2

that is,
-H x space left uncovered.

Or, which is the same thing, since m . 2e = E,

the expression is - .
- HE,

or, one half the quantity of light which would fall were there no grating.

4. To give one more particular case, we will take that in which

g = 2e, or the breadth of the wire is double that of the opening between the

wires.

Our expression then becomes He f ( ) (—= ) dx,
Jo \ x I \ sin 3x J

and - 4 (sin *) (
*?

*"*
)'
=

(0
-

<H)' fl
~
£")

'

=
(
g ~ '"" Xy J

V sm 3x I
y }

\ e3 - o- 3
I ye* + i + e-J

Assume this expression to be expanded in the form

a,^"-
4 + «2

6m -6 +

+ a2 0-
(6m - 6) + «,0- <8m - 4)

:

the terms from the beginning and end of the series having obviously equal

coefficients,

.
0S. _ 2 + e

- 6m = (04 + 292 + 3 + 20- 2 + 6-*)

x \a l 6
6"'- i + ch&m -« + + a20-

(6m - 6) + a 1 0-
(6ra - 4,

}

= a,&
m + a2&'"-* + OvO

6"-* + «4
6m - 6 + a^'"-^...

+ 2a l
e6"'- 2 + 2a#'"- 4 + 2a3&m - e + 2at6

6m - b
+...

+ Sflifi
8" -4 + 3(h&

m -'i
+- 3a3d

6m - s
+...

+ 2a1
66m

- 6 + 2ck&
m - 8

+...
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Equating coefficients, we obtain

«i = 1,

«2 + 2«, =

th + 2«2 + 3«i =

«4 + 2as + 3«2 + 2a, =

a5 + 2«4 + 3«s + 2«2 + a, =

a6 + 2«5 + 3a4 + 2a3 + a2
=

«*,+, + 2a3m + 3a3m _, + 2(hm _ 2 + flfc._»
= -

2,

= 0;

,*. a x
= 1, a2

= —
_2

«3 = 1, a4
= 2, a5 = — 4

a6
= 2, a7

= 3, a8
= — 6

a, = 3, a, = 4, au = - 8

Suppose this law to hold true for any three consecutive terms ;

that is, let <hn = »»

chn + 1 = n + 1,

«3B + 2 = - 2«- 2;J

• '. «3»+3 = 4w + 4 — Sn — 3 - 2w + 2«

= ft + 1,

a3„+4 = — 2n — 2 + 6n + 6 — 2w — 2 — »

= n + 2,

03„ +5 = — 2» — 4-3» — 8 + 4» + 4-«-l
= — 2« - 4 :

hence the law holds good for the next greater consecutive terms, and is

consequently general.
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Also the middle term is

(hm-i = 2m.

We thus obtain as the value of the intensity,

He
2

*He
4a

J
dx— {cos (6m -

4) x - 2 cos (6m - 6)x + ...+ m\

{c
-<«»-«>«_ 2£?

-
(6"'- 6)a + ... + m]

rrHe
j {1

- 2 + 1 + 2 - 4 + ... to (3m -
2) terms + m\4 a

irHe
{1 . (6m - 4)

- 2 (6m - 6) + ... to (3m -
2) terms}.

Now 1 — 2 + l+...+ m is obviously half the above expansion, when
= 1, and is consequently zero.

Also l.(6m- 4)
- 2 (6m - 6)+

= 1 (6m -
4) + 2(6m -

10) + + m(6m - 6m -
2)

- 2 (6m- 6)- 4 (6m - 12)- -2(m -
1) (6m - 6m -

6)

+ 1 (6m - 8) + 2 (6m -
14) + + (m - 1) (6m - 6m- 4)

= 1 .(12m -
12) +2 (12m - 24)+...+ (m - 1) (12m

- 12m -
12)

- 2 (6m- 6)
— 4 (6m -12)- - 2 (m -1) (6m - 6m -

6)

+ m (6m — 6m —
2)

= 2 m.

Hence the whole intensity is - Hem = - H x space left uncovered, the

same result as before.

5. Lastly, let us take the most general case, of a grating in which

the thickness of the bars bears any proportion whatever to the spaces left

uncovered.

Vol. VII. Part II. X
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Adopting the general expression, we have now to find the value of

fsin rmx\
2

(0
- fl"

1

)
2

(&*
~ •", . so (smrmx\ 2

(0
-

0-')
2

[9* - 0- r"Y
(sin *) llhTTFJ

or i—U^H •

Assume
/firm __ *J-"n\ 2

fL.—^_j
= 0iK— 1) + ^©trc—

»> + + p-MtV",

.-.
2™- 2 + 0-2™ = ^™ + «2

2 ''('"- l) + a30
2r( '"- 2) + ...

+ 2r(m - 2) + ...

which by equating coefficients, gives

ch - 2 = 0,

fl3
— 2«2 + 1 = 0,

a4
— 2a3 + «2 = 0,

#m + 1
— 2 Cfm + fl!m _ 1

= —
2,

=0:

hence a2
— 2, 03= 3, a4

= 4, &c.

and am+ i
= 2»a - (m — 1)

— 2

= »a — 1

that is, the coefficients form an arithmetic series, increasing up to m,

and then diminishing down to 1.

By multiplying by the factor (0
— 9~ l

f, we obtain

02r(m-l)+2
1 2Q 2r(m-2)+2 X.,.4 /ftg

2 + . . . 4. 0-2r(m- l)+2

+ 0- {* ûi) + ZQ-V'"^** + ...+ mQ- 2 + ...+ d*'^-"
~ 2

= 2 {cos (2/-/W
- 1 + 2)# + 2cos(2rw - 2 + 2)#+...

+ m cos 2a; + (m — 1) cos (2r — 2) x +...+ cos [2r(?«
-

1)
-
2]x\

— 4 {cos 2r(m — l)x + 2 cos 2r(m - 2)x +...+ (m ~
1) cos 2rx]

- 2m = K.
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Hence the intensity is

He r*dxR= _ Z**Zie-^i+«.+*-»=i+!>. «.... + me -*«

4 J & *«

+ (m -
1) e-<-

Sr - 2)a + (m -
2)<r

(4r- 2)s + ... + e-^^-*"

- 2 [<?-*<"-»* + ge-*<»-»)<. + ... + (m _
i)^-^™]

— m\

7vHe
4a {1 + 2 + + m + (m -

1) + ... + 1

- 2(1 + 2 + ... + m -
1)

- m}

7T i?e
+ —7— .{l.(2r.m- I + 2) + 2(2rm - 2 + 2) + 3{2rm-3 + 2)

+ ... + (*»
-

1) (2r -f- 2) + m . 2

+ (m - \)(2r - 2) + (m - 2) (4/*- 2)+ ... + 2r(m -
1)
- 2

- 2 \_2r .m — l + 2.2r(m—2) + ... + (m -
1) 2r~]\

Tie— ——
. \4>r(m

—
1) + 2 . 4r (m — 2)+ ... + (m — 1) 4r

+ 2m — 4r (m —
1)

- 2 . 4r («»
—

2)
— ... - (m — 1) 4r|

n-Hem ttII

2 2
x space left uncovered.

Thus it appears that the whole quantity of light is not at all affected by
the diminution of interference. For we obtain, whole quantity of light on

the screen : that whichfalls on the object-glass :: area of the uncovered part

of the glass : whole area of the glass.

It is unnecessary to dwell on this result. That it is a strong confirmation

of the undulatory theory, as far as regards two hypotheses respecting the

intensity, and the vibrations in different directions, cannot be doubted.

x 2
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The common assumption, that the intensity is measured by the square

of the excursion of a vibrating particle, although bearing a great air of

probability, is still not so obvious as to derive no benefit from a confir-

mation such as our conclusions tend to give it.

The hypothesis respecting the intensity of vibrations in different di-

rections, and at different distances, as stated by Mr Airy, is this: that

a vibrating particle transmits vibrations equally in all directions, but with

an intensity varying inversely as the distance. This hypothesis is not alto-

gether conformable to our conclusion, which appears to require that vibra-

tions transmit forces equally in all directions, and to all distances. Fortu-

nately, none of the approximate results deduced from either hypothesis

are vitiated by it, since the variation of distance is not taken into consi-

deration in the solution. Of course, these observations are based on the

supposition, that the division of a complete wave into elementary portions,

in the manner always employed to effect the exhibition of results dedu-

cible from a change of circumstances in the mode of transmission, is

allowable. My object, at present, being rather the demonstration of a pro-

perty of undulations, than an application to the theory either of light or

heat, I have contented myself with alluding to the bearings of the result

to which we have arrived. What has been said will be confirmed by the

following problem, with which the preceding is intimately connected.

" The whole intensity of light reflected at the surfaces of two plane

mirrors, inclined to each other at any angle, is not altered by the interference

of the light from the one mirror with that reflected from the other."»
To this problem we shall annex the same limitations, and apply the

same processes as to that already solved. That is to say, we shall conceive a

lens placed before the mirrors, so as to bring the reflected light to two foci

lying in a line perpendicular to that which bisects the angle between the

mirrors.

Let C be the projection of the line of intersection of the mirrors ; O, P,

the foci to which the rays from the mirrors respectively converge. Then

each wave on leaving the lens will be a portion of a sphere, of which the

centre is the point of convergence.
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Let b be the radius of the sphere = BO, AO =f, AM =
p, AE = x,

EB = y + f, BE being perpendicular to AC. Then the vibration at the

pointM due to a vibration C at B is

c sin ~ (vt t BM).A

But #M* = (p-f- yy + x2

= (p-JJ- s(p-/)y + «, + y
2

.-. I?il!f = 1? -£ ~^ . y nearly.

Hence the vibration at M produced by the upper mirror, as far as its

projection on the plane of the paper is concerned, is

2cfy sin — {vt
-

(p -/*) - ¥ + 2(p -/) -
y\.

Also, if B be not in the plane of the paper, BM2 becomes

(p -/- yf + ** + **> or (p -fj -2(p-f)y + b\

as before.
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Hence, the expression for the vibration is

cf dy sin —- (vt — B +
* ''

y J

In the same way, the vibration due to the second mirror is

- /*» , sin '- » i4ff^ sin »T
(,<

_ g - a +/>
</"A

ir(p+f) X b X V 2b )

B" being equal to Z? + 33 :

so that the whole vibration at the pointM is

Msin^-Z?^-^-^ )XV 2b J

where M and N are the coefficients of vibration due to each mirror

respectively.

If we expand these in terms of the common circular arc, which is
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we obtain, calling this arc 9 for the sake of brevity,

Imcos = fJ£pD + jvcos = *»<* -/) + 4p/l
s

.

n

+
{i^sin^^y^-iv-sin^^-^+^cosg;

so that the intensity at the point is represented by

M2 + Ara + 2MNcos— Pte+f)
§

X o

We must next integrate this expression between the limits — oo and

+ oo for p.

now/:^^/^^^^; ^-/)^^) .^-/)

-
** >. I

1 " C°S
X

*

ft J (j, -/)'

=—— —
1 1 — e~ \ b I

, a being equal to zero,

c*X2
ft

2
«* g+f

Similarly, f° N*dp = c
2

Xft(# +/).
•/-co

Hence we find that the whole effect of each mirror is proportional to its

aperture : which result is strongly confirmatory of the general character

of our calculations.

Lastly, MNcob^P^D

=V(i,
2 _ /2

sin
x ft

sm
x ft

cos
x ft

'

ft* 2tt

g>-(f -r> \ ^ —;
—

°"t r-/™""x
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Now the circular functions in this expression are

/> x IT 27T ff + f
(COS aj — COS ap) COS ap, Calling

— j~ > «•

But by Laplace's Formula,

and the integral between our limits is merely the double of this ;

.•. the integral of the term

ilfiV cos op = A {cos afe'
a^~l -

i
-

£e~2aA/rT
!

= A {cos afcos af— <J — 1 sin af— ± — ^ (cos 2af- •/— 1 sin 2a/*) I

= A {COS
2

a/*
- i — 1 COS 2af— <s/

— 1 (sin a/cOS a/ — ^ sill 2a,/)}

=

a very remarkable result.

If M be not in the plane COP, there is a factor — in M and JV,

which amounts to the factor f I —
j
dq or

-g-
in the final result.

/^sin <7A\
2

7 ^^
* 1 rin r\w

q

We find then that the whole intensity is the sum of the intensities

due to each of the mirrors separately. Should the form of the function

M* as integrated for the whole space be objected to, the only reply is,

that one or other of two things must be supposed ; either 1° that

the integration for spaces perpendicular to the plane of the paper would

take away X, or 2° that the intensity is a function of the length of the

wave. In either case our conclusion is correct. There is evidently some

factor required to render this result of the same dimensions as that with

which we set out. Perhaps I am not warranted in assuming, from the

coincidence of my results with the principle of vis viva, and their con-

sequent probability, that this factor is not variable from point to point.

When the question first arose in my mind respecting this matter, I thought

to answer it at once by an appeal to the transformations effected by the

" Differential Calculus to any indices." Although the result of this appeal

is very far from satisfactory, I do not think it will be deemed an un-

pardonable digression to take it here.
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The principle assumed as the basis of adulation is this*: " The effect of

any wave in disturbing any given point, may be found by taking the front

of the wave at any given time, dividing it into an indefinite number of

small parts, considering the agitation of each of these small parts as the

cause of a small wave, which will disturb the given point, and finding, by
summation or integration, the aggregate of all the disturbances of the

given point, produced by the small waves coming from all points of the

great wave."

I took, then, the simplest case which can be conceived, viz. that of an

infinite plane wave. There can be no doubt that the result in this case

ought to be the following : that the disturbance produced is the same in

intensity as that corresponding to one of the points in the disturbing

wave.

Let b be the perpendicular distance of the given point from the wave,

then it is evident that if c sin — (vt — x) be the disturbance of any point in

the wave, the effect produced, according to the above principle, will be re-

presented by

2ttJ crdr sin — (vt — y/r
2 + b

2

)
x some quantity.

Nor is it less evident that the result actually is c sin— (.vt
—

b).A

What therefore is the multiplier in question? If it is not constant, it

must be some function of r.

Denote r2

by %, and let the multiplier bey (ss)
:

then our equation assumes the form

7T . f* d% sin —-
(vt

— \A + U)f (as)
= sin — (vt — b).

But by the very elegant theorem of M. Liouvillef

/o" <f> (x + a) a*-1 da= (- l)^/^ (x) dx^,

*
Airy's Tracts p. 267- Traite de la Lumiere, par C. H. D.Z. (Huygens), p. 17. A. Leide,

1690. t Journal de l'Ecole Polytechnique, 21« Cahier, p. 8.

Vol. VII. Part II. Y
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we obtain, if we write 2 A^~l

for,/ (as),
a for U ;

f &-1 d% sin — (vt
- y/% + a)

=
(
- Vf&l <p («) dor

= (— i)>/ sin x (vt ~ v/") rfa^'

and consequently, from the equation above,

1A{— iy*£ /" sin-^(i^ -
y/a)daf

l = sin -^ («£ - Va).•'A A

This equation is satisfied (apparently) by making n = 0, A = -
,

and consequentlyf(%) = —
, /(f) = —

2 .

The case is, however, of too doubtful a character to warrant us in

adopting the conclusion. One thing alone I infer from it, that if any power
of the distance (not of r) be assumed as the factor, it must be the inverse

square. It would require that we should retrace our steps, and investigate

the different formulas corresponding to this hypothesis, before Ave could

speak positively on the subject. I have only to add to this discussion on the

probable coefficient of vibration, that an approximation has been made use

of in the value of the distance between the disturbing and disturbed points,

as it appears within the circular function. The approximation amounts in

fact to supposing the wave elliptical, instead of circular. In the second

problem I find that the square of this distance, being substituted within the

circular function for the distance itself, leads to precisely the conclusions we
have obtained. It is possible, therefore, that the omission of our factor, and

the approximation made use of within the circular function, exactly coun-

terbalance each other.

I cannot conclude without repeating my conviction of the importance
of results such as those which Professor Forbes has just announced. It

appears that the effect of scratching a piece of rock salt, &c. is to alter its

power of transmitting heat in such a manner, that heat of a low tem-

perature, or dark heat, is transmitted in greater proportions than before. If
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then the two kinds of heat correspond, the one to vibrations, or transmission

due to vibrations ; the other to transmission due to excess of elasticity, our

analysis teaches us to expect that the quantity of the former kind stopped

by the wires or scratches should be in exact proportion to the space covered

by them, whilst we should hardly expect to find any considerable stoppage

effected on the latter. Thus I am led to hope that the Theory which I pro-

posed in the Transactions of the Cambridge Philosophical Society, Vol. vi.,

pp. 274, and seq. and subsequently developed in my little work on the

subject, will be strengthened in some points, although I am far from

expecting that it will be confirmed in all. Perhaps subsequent results may
render it necessary to modify our hypotheses, but at present I do not know
that experiment is very far in advance of theory. I cannot conclude with-

out expressing my conviction that the masterly researches of Professor

Forbes will have the effect of setting right several errors even in the Theory
of Light, which have crept in from the difficulty of subjecting that branch

of philosophy to strict measurement.

P. KELLAND.

Edinburgh,

Jan. 23, 1840.

Y2





X. On the Foundation of Algebra. By Augustus De Morgan,
F.R.A.S. F.C.P.S.; of Trinity College; Professor of Mathematics

in University College, London.

[Read Dec. 9, 1839.]

The extent to which explanation of the meaning of the symbolical

results of Algebra has been carried within the last half century ; the com-

plete interpretation of all which formerly appeared incongruous; the sepa-

ration, as it was called, of the symbols of operation and quantity, which

amounts to the use of an algebra in which the symbols represent something
more than simple magnitude ;

—will for some time to come suggest inquiry

into the logic of this many-handled instrument of reasoning, which seems

to be capable of presenting, under fixed laws of operation, all the results

which arise from very distinct primary conceptions as to the things

operated upon.

When several different hypotheses lead to results which admit of a com-

mon mode of expression, we are naturally led to look for something which

the hypotheses have in common, and upon which the sameness of the method

of expression depends. A comparison of the properties of the ellipse and

hyperbola would bewilder the imagination, under any of the distinct defi-

nitions which might be given of the two curves
;
nor would the mind

rest satisfied until it had discovered the reason of the similarity which exists

between these properties.

Algebra now consists of two parts, the technical, and the logical. Tech-

nical algebra is the art of using symbols under regulations which, when this

part of the subject is considered independently of the other, are prescribed

as the definitions of the symbols. Logical algebra is the science which

investigates the method of giving meaning to the primary symbols, and of

interpreting all subsequent symbolic results. It is desirable that the word de-

finition should not enter in two distinct senses, and I should propose to retain
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it as used in the art of algebra, applying the terms explanation and interpreta-

tion to denote the preparatory and terminal processes of the science. Thus a

symbol is defined when such rules are laid down for its use as will enable us

to accept or reject any proposed transformation of it, or by means of it. A
simple symbol is explained when such a meaning is given to it as will enable

us to accept or reject the application of its definition, as a consequence of

that meaning: and a compound symbol is interpreted, when, having
occurred as a result of explained elements, used under prescribed defini-

tions, a necessary meaning can be given to it ; the necessity arising from the

tacit supposition that the compound symbol, considered as a new simple
one, must still be subject to the prescribed definitions, when it subsequently
comes in contact with other symbols. The last words may need the remark,
that though we sometimes appear to interpret a symbol merely for the

purpose of explaining a result, ye we know that such interpretation would
be subsequently rejected, if the use of the symbol, under the prescribed

definitions, were not found to be logically admissible.

A symbol is not the representation of an external object absolutely, but

of a state of the mind in regard to that object ; of a conception formed, for

the formation of which the mind knows that it is or was indebted to the

presence, bodily or ideal, of the object. Those who do not remember this,

the real use of a symbol, are apt to dogmatize* declaring one or another

explanation of a symbol, that is, the signification by it of one or another

impression produced on their own minds, to be real, true, natural, or neces-

sary : it being neither one nor the other, except with reference to the par-
ticular mind in question. To take a very simple case, and one which bears

upon our subject, let us imagine that we form successively a conception of

the absence of all definite magnitude, followed by one of the existence of a

certain magnitude, say a line of given length. The mind of one person may
pass from the one to the other by imagining the given length to be instanta-

neously generated, no one portion of it coming into the thoughts before

or after another
; that of a second may make the transition by imagining a

point to move from one extremity to the other : while that of a third may
dwell rather on the relative position of the two extremities, and may think

* Of course, I use this word in its primitive sense, without any censure implied : the very-

sentence in which the word occurs is, and is meant to be, dogmatical.
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more ofB attained by motion from A, than of the quantity of length in

AB. All three would use, perhaps, the same modes of expression : and I

suspect* that there could be detected, among persons who think about first

principles, a very considerable degree of variety in the points of view under

which fundamental words suggest their objects ;
while as much exists, but

could not as easily be found, among those who have studied the exact

sciences, without paying particular attention to their foundations.

A symbol may thus denote either magnitude, operation, by which mag-
nitude is attained, or the conception of one extreme arrived at, the other

having been the previous object of contemplation. The earlier f algebraists

most certainly dwelt on the first notion ;
a + b is with them the result of

an operation, in which the method of obtaining it is so completely for-

gotten, that the result a + b is actually obtained by a distinct operation.

It seems to me that Sir William Hamilton, in his very original and

methodical memoir on algebra as the science of pure time, has adopted a

view of the third kind. I cannot see why the whole paper might not be as

easily applied to succession of points in a line, as to succession of epochs in

time. Succession, that is to say continuous succession, might be made the

fundamental conception in both cases ; and if such were the author's inten-

tion in the use of the word time, I should be very glad to maintain after him

that one of the explanations which suffice to convert technical into logical

algebra, has been fully established in his memoir. But, if any thing more

physical\ be intended by the distinguished author, and if some of his

phrases are to be interpreted as of his asserting algebra to be the science of

* In a short biographical account (which I have before me, in a private communication) of

the late Mile Sophie Germain, whose papers on the theory of elastic surfaces are well known,

it is asserted that she could never form the conception of space, except by the means of time :

this was her own mode of expressing, to the writer of the notice, a state of mind by which

he accounts for another fact, namely, that she had very little aptitude for pure geometry, and

a great attachment to the theory of numbers.

t See my Calculus of Functions, sect. 245.

{ This word is here improperly used ; but I refer to the notion of those who would have

made geometry a part of mixed mathematics : that is, if the algebra of Sir W. Hamilton would,

in the opinion of those just alluded to, also have been a part of their mixed mathematics, and

if Sir W. Hamilton should admit that they have as much reason, his terms being understood in

his own sense, for their location of his algebra as for that of geometry, I should then say that

the word used in the text is allowable.
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pure time, I should then cite him as an instance of the dogmatism already

alluded to : and the more readily, that by the association of the word with

his labours, I may claim to have purified it, for the purposes of this paper,

from the dyslogistic associations usually connected with it.

The modern algebraists usually dwell on the second notion, namely that

of operation ; and this I shall adopt in the present paper, not only as the

most common mode of conception, but also as being equally capable of con-

nexion with either of the other two. Imagine the process, whatever it may
be, by which we pass from the contemplation of to that of a

; then if a

represent a line, we can consider, as a result of our process, either the posi-

tion of one extremity with respect to the other, or the quantity of length

intercepted between the two.

I separate the following maxims from the rest as being equally ap-

plicable to the symbolical algebra which we have, and to any other

which we might have. For it must never be forgotten that, though our

present inquiry includes only the possible explanations of one given tech-

nical algebra, the subject may and probably must end in the investigation of

others, or at least in the extension of the present one.

1. A simple symbol is the representative of one process, and of one

only.

2. All processes, how many soever, may be looked at in their united

effect as one process, and may be represented by one symbol.

3. Every process by which we can pass from one object of con-

templation to another, involves a second by which we can reinstate the

first object in its position : or every direct process has another which is

its inverse. To complete the separation of these maxims from all others,

I propose some considerations connected with the possible extensions of

technical algebra.

The system of explanations which proceeds on the supposition that

length affected by direction is the primary object of contemplation in

algebra, is well known as to its history by Professor Peacock's Report
to the British Association, and as to its present state by the Treatise on
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Algebra of the same author*. But in this branch of logical algebra
the lines must be all in one plane, or at least affected by only one modifi-

cation of direction : the branch which shall apply to a line drawn in any
direction from a point, or modified by two distinct directions, is yet to be

found.

It is obvious that our power of making the preceding application
of algebra is co-ordinate with that of assigning a symbol Q, such that

a + bQ — «, + b^Q gives a — a x and b = bu

An extension to geometry of three dimensions is not practicable until

we can assign two symbols, Q and w, such that

a + bQ + cm — a, + b xQ + c x w gives a — «1} b = b x and c = c, :

and no definite symbol of ordinary algebra will fulfil this condition.

Again, in passing from a; to — x by two operations, we make use in

ordinary algebra of one particular solution of

<p

2x = —
x, namely cpx = \/ - 1 . x.

An extension to three dimensions would require a solution of the equation

<p*x
= — x, containing an arbitrary constant, and leading to a function of

triple value, totally unknown at present.

A general solution of cp^x
= ax can be expressed when any particular

solution -&X is known. For if f-arf-^x be the general solution, we have

cpx =f ,sr
!!

f-
] x =faf~ l x — ax, or fax = afx:

so that it is only necessary thatf and a should be convertible. Since then

(
- l)^x is a particular solution of (jy'x

= —
x, a general solution is

f\ - 1 \f~
x

x} where f(-x) = -fx. But with our very limited knowledge
of the laws of inversion, no solution which we can now express in finite

terms will afford any help. Our means of expression must be augmented
before we can hope to overcome this difficulty : or, as in most other cases

* Professor Peacock is the first, I believe, who distinctly set forth the difference between

what I have called the technical and the logical branches of algebra. The second term, I am

aware, is a very bad one, and I should be glad to see a better one proposed ; but I prefer

technical to symbolical, because the latter word does not distinguish the use of symbols from

the explanation of symbols.

Vol. VII. Part II. Z
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of the kind, our difficulties recur in a circle; the means which we have

used to propound a possible method require the problem itself to be solved

before they can be successfully used.

Let the object of contemplation be simple magnitude of any one kind,

as in the arithmetic of concrete quantity. The process which must precede
all others is what we call selecting one magnitude for consideration.

Previously to this step, we have no object under our perceptions, and

may write as the representative of this preceding state, and as the

recognition of its existence. This first magnitude we may call 1, and

the operation of transition from one state to the other we may denote by
+ 1. The contemplation of simple existence, and of the possibility of ex-

pressing it by a spoken symbol, suggested the earliest definition of unity—
M0NA2 ecrTi, icaO' r/v o eKaarov run bvrwv ev Xeyexai. If we represent

our present state by (0 +1), we may consider that with respect to any other

possible magnitude our position is what it was when we denoted it by 0.

If we now denote it by 0', we may, as before, make the transition from

0' to 0' + 1, which implies that we have further taken into consideration a

new magnitude of the same amount.

This result, (0 + 1) + 1, we may, if we please to consider it as

attained by one operation, signify by + 2 : and so on. Using the symbol
— to denote the process by which we retrace our steps, we have all

that is necessary to express addition and subtraction. The principle which

1 wish here to enforce is, that addition is connected with the symbol in

a manner which requires us to imagine that we startfrom one magnitude,
as it were from a new 0, and renew* the process by which we passedfrom
the first to that magnitude.

Let us now suppose that modified magnitude is under contemplation,
and let the simple symbol a denote a line measured in a given direction

from the zero point 0. In this zero of space, which admits of an infinite

number of positions, we seize more clearly than before that notion which,

as to simple magnitude, is not easily admitted as necessary, and may
seem rather fanciful : namely, that every magnitude attained may, as

*
Any one who doubts the justness of this fundamental position should add six to four on

his fingers, having previously refreshed his notions of six and four by the same process.
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to future addition, be considered as a new zero. We are now to assume

that,

1. Parallelism and sameness of direction are meant to be identical

terms
; that is to say, the two directions conceivable on any one of two

parallels are severally the same as the two directions on the other.

2. Every simple symbol represents a line given in length and direction :

thus a = b means that the lines a and b, equal in length, have also the

same direction. And the process implied in + a is the transference

of a point from the position to a given length in a given direction.

We can now find the necessary meaning of (0 + a) + b
; necessary,

on the supposition that the technical algebra is

to become logical on the explanation of the sym-
bols before us. Let 0A and 02? represent the

lines symbolized by a and b : if then we take

A, at which we arrive by the process + a, as

a new zero, and proceed with it in the same

manner as in performing + b on the old zero,

we draw AC parallel and equal to 02?, whence 0C being symbolized

by c, we have with reference to the first zero,

+ c = (0 + a) + b = (0 + b) + a.

I need not further dwell on the connection of addition and subtraction

in arithmetic with the processes called by the same names in this ex-

planation. I shall only here suggest that perhaps the words direct zero

process and inverse aero process might occasionally be found useful *.

The usual method of defining the process of addition by reference

to the diagonal of a parallelogram is convenient, but destructive of all

true analogy. The fundamental theorem of statics suffers from the same

method of statement.

I now proceed to the process of multiplication, which will readily

be seen to be connected with unity in precisely the same manner as is

addition with zero. If b be formed from unity by the train of processes

+ 1 + 1 + 1, we consider a as a new unit, and let the symbol ba represent

* In my Calculus of Functions (sect. 12, 13, 17) will be found some analogies connecting

simple addition with zero, and multiplication with unity.
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the same operation on this new unit, or + a + a + a. Similarly, if by

the line 1 we mean a line having the length and

direction 1, and OA and OS by a and b, and if we

take Oias a new unit, and perform on it the opera-

tions by which we pass from 01 to 02?, that is, take

an angle AoC equal to 10 J?, and let 0C be in

length the result of the arithmetical operation on Oi
and OB,—then 0C must be represented by ab. The

processes of multiplication and division might be called

the direct and inverse unit processes.

There is now nothing particular to be said about the four operations,

or the simple powers, with positive or negative, whole or fractional, real

exponents, or any combinations of them. The interpretation of a + b\/- 1

follows in the usual manner.

In illustration of the propriety of considering symbols as functions of

zero or unity for purposes of addition or multiplication, it may be advanced

that unless we do so, we change the meaning of the terms direct and in-

verse as we proceed from the lower to the higher parts of the science. Un-

questionably, if ever we have a right to assume a clear conception of this

distinction, it is in the comparison of addition with subtraction, and of mul-

tiplication with division ; but for all that, a + x and a - x are not inverse

functions, considered with respect to x, though they are so with respect to a.

And similarly of ax and a -=- x. When we come to the symbol x", then, and

then only, do we begin to describe inversion correctly : for we usually

consider this as a function of x and not of n, when we assert Xn to be the

inverse. But if we considered this as a function of n, the inverse would be

log n : log x.

The separation, as it is called, of the symbols of operation and quantity,

is a method of explaining technical algebra as simple in its character as the

preceding. Let the fundamental object of conception be
(p (x — nh), n

being infinite, which stands in the place hitherto occupied by 0. Let*

2
(j> (x + ah) represent the train of operations by which we pass from

(\>(x
— oo h) to

cf> (x + a — lh), or

* In the common method of treating this subject, the inverse symbol is made to precede

the direct one. Several adaptations of notation are necessary before we can exactly represent

the common methods.
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<f>(x
- oo h) + + (p(x

- h) + <px + (p(x + h) + + <j>(x + a — \h).

The inverse operation, or rather the operation by which <p (x + ah) is

obtained from 2<£(# + ah), is either 2 {<p (x + a + \h)
-

<p (x + ah)\,

or 2 <p (x + a + 1 h)
— 2

cj> {x + ah), and may be symbolized either by
A2 <p (x + ah) or 2A

<p (x + ah).

The proper way, however, of considering this class of extensions may
not be as a simple explanation of technical algebra, (though it might be

regarded in that point of view,) but as an extension of technical algebra

itself, in which new explanations of the direct and inverse unit process are

used co-ordinately with the one already established. If we agree to signify

by v°, v 1

, v
2
, &c. a new progression of operations, in which the zero and its

processes remain subject to the usual definitions, nothing prevents us from

supposing that the prescribed definitions of the unit process may remain

true if v° be made the unit, v 2

being derived from v '

by the same train of

operations as v 1 from v°, and so on. Neither is it impossible that the same

laws of convertibility and distribution may exist between compound opera-

tions, in which different units are employed, as are laid down in the pre-

scribed definitions relatively to the different unit processes suggested by

simple magnitudes.

Let v° =
<px, and

V 1 = aa (px + «i (p {x + h) + a2 (p (x + 2h) +

where a , a x , &c. may be functions of h, but not of x. Technical algebra may
be carried to its full length under these explanations, and many deve-

lopements may be and have been simplified by their means. It is not my
intention here to write a treatise on this subject : my object is, to point out

that the logic of each and all of these explanations is the same ; no mode of

arriving at any one explanation differingfrom that ofany other in thefunda-

mental, and what ice may call the arithmetical, part of the subject. It is certain

that the discovery of inverse operations is not yet complete : this must be

reserved until such time as the branches, which adopt length modified by
direction as the explanation of simple symbols, are properly connected with

that technical algebra, in which various unit processes are used co-ordinately

with the same zero process.
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It may perhaps be worthy of note that the series

do + a x x + a% x
l +

may be considered as v e" when v = in the equation

V€" = aue
v x «l6

u+log * + as e
v+2logx +

I now return to the purely algebraical question. It is in our power to

avoid all ambiguity in results, by simply prescribing that every symbol
shall express not merely the length and direction of a line, but also, the

quantity of revolution by which a line, setting out from the unit line, is

supposed to attain that direction. When this is done, I shall use a double

sign of equality to denote it. Thus, if we denote by (a, 9) a line of a length

a, which has made the revolution 9, it is allowable to write

(a, 9) = (a, 9 + 2tt) = (a, 9 + 4tt),

but not

(a,9) = = (a,0 + 27r) = = (a,0 + 4tt)

As long as we neglect this additional prescription, great care will be

requisite to prevent our falling into error. While exponents transform

lengths into lengths, and directions into directions, no great caution is re-

quisite : but when, as we shall presently see, an exponential process causes

the exponent of a length to affect that of direction, or vice versa, the follow-

ing fallacy of a continental analyst, mentioned by Professor Peacock in his

Report, is frequently likely to occur. Stripped of unnecessary details, it is

as follows :

or e
~iir3n' = 1, an absurd result.

The answer is very simple : if no extension of explanations be contem-

plated, i*W^i is not necessarily = 1, since it may have an infinite number

of values. If the extensions be made, and if = merely denote sameness of

direction, the same thing is true ; for l2W=i or (e
2™^)

2™^" 1

has an in-

finite number of values, of which one only (€<>)2™V=i is = 1 : and the same

fallacy might be thus propounded ;

^/z* = + x, y/x* = — x, therefore x = — x.
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But if = imply sameness of revolution, it is not true that e
2*^-1 = 1,

except in length.

The interpretation of A^~ x

might be easily attained from prescribed

definitions, and from their necessary result

eev=i — Cos 9 + sin 9 \/ - 1 ;

nor would this step be logically objectionable. It would, however, be more

satisfactory if something like an a priori interpretation, or simple explana-

tion, could be given. I do not consider the following as complete, but it is,

as far as it goes, of a new character.

Conformably to definitions, we must have

{(log a, 0)V=I}^ .
{log a, 6}-' = (- log a,

-
9),

where by (log «, 9) is meant a line of the length a, and amount of revolu-

tion 9. Now we cannot suppose that the first operation changes the sign of

log a only, and the second that of 9 only : for this would be to make the

operation ( y~l mean different things in different places. We must pro-

pose some operation of permanent form, which being twice performed will

make the alteration required.

From the definitions, it follows that

(log a, 0) x (0, 9) =
(log a, 9),

whence (log a, 9) must be the product of two functions, one of a and

the other of 9, the first of which is known, being eloga or a, and the second

of which must be of the form Ee
, since by definition

(0, 9) x (0, 9')
= (0, 9 + ff).

Hence aJEe
, or a(0, l)

e
, is the representative of a line a, inclined at an

angle 9. If then we make cos 9 and sin 9 mean nothing more than the pro-

jecting factors of a length inclined at the angle 9 upon the axis of the unit

line and its perpendicular, we have

(cos 1 + \/ - 1 sin l)
e = cos 9 + \/ - 1 sin 9.

The definition does not differ from that of cos 9 and sin 9 in geometry,
and this equation is an a priori property of these functions, deducible im-
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mediately from the definition, in any system which gives meaning to \/— 1

from its commencement.

The hardest and most delicate part of this investigation is the connexion

of €6v/=I with a unit inclined at an angle 9
; or generally to show that

the operation ( )^~
l

changes the exponent of length into one of direction,

and vice versa, without the necessity of inferring this from interpretation.

If we assume beforehand that e^-1 is real, under the extended definitions,

it would be difficult to imagine what other office ( )
v'-i could perform ;

but such an assumption would not be a proper one, since all the associations

of preceding algebra would lead us to suppose that each extension removes

only one class of inexplicables, and leaves, or perhaps introduces, others. I

cannot complete this part of the subject satisfactorily, but the following
considerations will show that the most simple mode of attaining, upon
an explanation, the technical end of the operation ( ^^ is precisely that

which answers to the above.

Required an operation which repeated n times upon a function of

n quantities shall end by changing the sign of all. Take four quantities,

a, b, c, and d. Successive changes of sign made upon one after the other

will be really different successive operations ; but if we change the sign
of a given one, say the first, and at the same time make a set of periodic

interchanges, writing b for a, c for b, d for c, and a for d, we shall have

an operation which repeated four times will produce the desired effect.

Thus we have successively,

<p(b, c, d, - a), cp(c, d,
-

a,
-

b), <p{d,
- a -

b,
-

c), <p{- a,
-

b,
-

c,
- d).

Thus we see in the succession (log a, 9), (-9, log a), (-log a, -9) a

method of passing from A to A' 1

at two similar steps, which does not

involve the use of y/-\. We see the same in (log or, 9), (9,
-
log a),

and (
-
log a,

-
9). If then we assume, as a suggestion,

(log a, 9)^ =
(
-

9, log a), (log a, 9)
'^ =

(0,
-

log a),

we find, making A = (log a, 9), the following equations ;

^v=J)^ = A~\ {A-^)'^~
l = A~\ (A^)^-

1 = A,
i i_ _i_

(A^if'
1 = A'\ (A-^k)^ = A~ t

, (A^M)'^-
1 = A,



FOUNDATION OF ALGEBRA. 185

in perfect fulfilment of all the fundamental conditions which prescribed

definitions impose. The assumption gives

(aE e
)^~

l = J27V=i , 6iog«.v=r
5

where Ee^~l must be a symbol of length, and elos<>V=i of a unit inclined

at the angle log a. Consequently e
6 1̂ must signify a unit inclined at an

angle 9.

It might be asked whether there is anything in the preceding process

which restricts us to the use of the base e rather than any other, I answer,

nothing whatever : but at the same time there is nothing which binds

us to the use of any particular method of measuring angles. It may be

deduced from the preceding that the base e must be used co-ordinately

with that mode of measurement which I call theoretical*. This connexion

depends entirely upon the purely numerical process by which the equation

62irv/=5 = 1 is proved to be satisfied when e and * have their usual meanings.
If for any reason we prefer the base a, the measure of two right angles

must be tx {log e to the base a\.

I think it cannot be disputed that interpretation should be avoided

where explanation can be given. If where the latter cannot be obtained

suggestion upon such analogies as present themselves were to take its

place, the former would be also replaced by verification. In the present

instance, the attainment of

6<V=i = cos 9 + </~-\ sin 9 from E6 = cos 9 + \/^l sin 9

is the verification.

1 now come to the theory of logarithms. It is a circumstance which

I hold to be not a little remarkable, that the ancient form of algebra was

only saved from being convicted of incapacity to produce its own legitimate

results, but very little time before such an escape would have been

rendered impossible by its receiving the necessary accession from the more

extended form. Mr Graves has admitted that his view of the new

logarithms should rather have been that of an extension imperatively

* In those works on Trigonometry which use the arc and angle indiscriminately, this mode

of measurement is said to be in parts of the radius. A term is much wanted which shall not

imply this confusion between arcs and angles ; and I propose that the angle which subtends an

arc equal to the radius shall be called the theoretical unit.

Vol. VII. Part II. A A
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required than of a correction to already existing formulae : and in this

view I perfectly agree. If we define log x, or rather Xx, (reserving log x

for the numerical logarithm of the length) to be any legitimate solution

of e
Xr a x, it is plain that the logarithm of n inclined at an angle v, (or

of N) to the base b inclined at an angle (S, (or B) is to be derived (avoid-

ing ambiguity) from

. at logn + v\/ - 1
or \BN= = ,-^-r—r, J

- •

logi +^-l
This result is real when .

°
,
= g ; nor is it more surprising that an

impossible quantity (hitherto so called) should have a possible logarithm,

than that exponential operations not containing v -
1, or not inter-

changing exponents of length and direction, should in certain cases enable

us to pass from one line to another. I need not enter into details of the

properties of the preceding equation. If we admit all symbols to be

algebraical (in the old sense) which denote lines drawn in the unit

line or its continuation, whatever may be the number of complete revolu-

tions after which they rest there, we must then admit that the logarithm

of a unit which is in its position for the (m + l)
,h

time, with respect to

e which is in its position for the (« + l)
th time is

1 + 2»7T\/^1

the form proposed by Mr Graves.

In a work of M. Cauchy, and perhaps in other writings which I am not

acquainted with, mention is made of a singular point in curves which

he calls point d'arret, at which the branch suddenly stops. Such a point

has long been admitted in the spiral of Archimedes and other curves,

owing to the neglect of making those extensions with regard to the sign of

the radius vector which were necessary to complete the connexion* of polar

and rectangular co-ordinates ; and from the assumption of the impossibility

* On this subject I may be allowed to refer to page 341 of my Treatise on the Differential

Calculus.



FOUNDATION OF ALGEBRA. 187

of which (I speak from memory) D'Alembert drew those instances

in which he contended that the negative quantity is not always the

contrary of the positive quantity. Disregarding such points d'arrit, there

is another sort which frequently occurs (but only in exponential or

logarithmic curves), in which the abruptness of the termination is better

marked. Thus in y =
(1

-
x) log (1

-
x), there is, in our present system,

an absolute cessation of the curve when x = I and y = 0. Here, when
the requisite extensions of the logarithmic theory are made, it will be

seen that there is not an absolute abrupt termination, but the commence-

ment of what French writers have called a branche pointilUe, a part of

a curve, which I do not remember to have seen mentioned in any English

work, except Professor Peacock's Report.

A. DE MORGAN.

University College, London,

October 16, 1839-
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XI. On the Effect of the Non-Residence of Landlords, &f. on the Wealth

of a Community. By J. Tozer, Esq. M.A. Caius College.

[Read March 16, 1840.]

The investigations that have been made by political economists of

the effects produced on the wealth of a community by the non-residence

of its proprietors, have frequently been asserted to furnish results which

are not confirmed by observation. The following is believed to be a

more careful investigation of the problem than any that has yet been

made, and one that accounts for the apparent discrepancy.

While the proprietor resides, his income, subject to such deductions

as are made by direct taxation, will be expended either in purchasing
commodities or in paying for services. Those whose services he retains

will expend what they receive in the same manner, and therefore

the whole income of the proprietor will be expended, either directly or

indirectly, in the purchase of commodities. The necessary and sufficient

division of these will be into two classes, those which have been produced

by the labour and capital of the countrymen of the proprietor, and those

which have been produced by the labour and capital of foreigners, and

which have been placed within his reach by the employment of capital

and labour which may have been either native or foreign.

Of taxes, we need only consider those which the proprietor is con-

strained to pay while he is resident, and whose payment he evades by
non-residence. We may also, without affecting the result, assume these

to be paid when the income is realized, and not before.

We have then, while the proprietor resides, a portion of capital

employed in raising the produce of his estates
;
a second portion in raising

such other native commodities as are consumed by himself or those
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whose services he retains, and in distributing such foreign productions

as are so consumed; and a third portion, which is commercial capital,

belonging either to resident natives or to foreigners, and which is employed
in purchasing and importing those foreign productions.

Each of these classes is susceptible of the usual further divisions

into fixed and floating.

Call these portions of capital Ct C,', C2 C2 , C3 C3 respectively ; CV C2 C3

being fixed, and C
X
C2C3 floating.

Then if q be the amount of a unit of capital with its profit, Cv C2, C»

must at the end of the year, or other period of return, yield q C„ q C2 , qC3,

respectively, and C/, C», C3

' must yield annuities which pay the profits

(q
— 1)CY, (q

— l)C2', (q
— 1)CS', and replace such portions of those capitals

as have been destroyed. Call these annuities A if A 2,
As, respectively.

Then if q . Q + A x
— q(c x

+ c2 + ... c„)
=

q^Lc,

where c„ c2 ... are portions of capital which respectively yield the returns

ru r2 ...r„ for each unit, the fixed capital being expressed in terms of

its value as floating capital, and ru r2 ...rn being a decreasing series, the

proprietor's income will be

l}nc(r
—

q), which suppose = R;

%l indicating the sum of the terms c, (n -
q) c% (r2

-
q)...c„ (r„

-
q).

Of this, a part Bt suppose will be paid in those direct taxes the pay-

ment of which will be evaded by non-residence.

A part qC2 + A 2 will be received by the owners of C2 + C2 .

The remainder q.C3 + A3 by the owners of C3 + C3 . Let this re-

mainder =
2jo ; p„ p2) &c. being portions of it which are exchanged for

portions of foreign produce of different kinds.

Suppose now H to be the country in which the proprietor's lands

are situated, K that in which the equivalent for p,
is produced ;

and let

a-, be the price of that equivalent in K.

Then if there be direct intercourse between H and K, and if K
import the produce of the proprietor's estates, this price in H must

have been raised to <r(l + e + v) where ea- is the expence of making
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the transfer, and >/<r the import duty in H, it being supposed that there

are no export duties. If K do not import the produce of the proprietor's

estates, she will either import some other articles produced in H, or the

produce of some other country which does import from H; and there will

be a series of exchanges effected by equivalents that are produced by

capital other than that we are considering, the last operation of im-

porting to H yielding a tax to- to its revenue.

Hence while the proprietor remains at home the produce of his estate

is thus distributed :
—

To native capitalists and labourers, 2^c{r(l
—
i)+qt)

—
2/u, of which

C, + C8 + C\ + C\+ Ai + A-i- (C'i + C'z) . q is employed in replacing capital.

To revenues of foreign states, 2<r2>?.

To revenue of H, fZ\c(r
—

q) + t2<t.

To commercial capitalists and labourers, 2o-2e; the remainder of

2/0 replacing the commercial capital with which the foreign purchases

were made.

When the proprietor becomes non-resident the capital C2 + C'2 will

be disengaged, because his absence destroys the demand on which its

employment depended ; but a new demand for such commodities as

can be exported with advantage will be created by the absence, because

the rent of the proprietor must now be exported. It is therefore in

raising such commodities that the disengaged capital will be employed.
If then the exports of H be made in manufactured goods, there will

not in general be any variation in the rate of profit, because the employ-
ment of additional capital in manufacturing does not diminish profits, if

the demand for manufactures be proportionably increased.

The income to support the inhabitants of H is therefore precisely

the same before as after the removal ; but there is this difference, the

equivalent for the produce of C2 + C"8 was then possessed by the proprietor,

it has now to be created by the labour of those who produce the

commodities, by the exportation of which his rent is paid.

Again, let the exports of H consist of raw produce, then to the

series Ci c2 ...cn there will be in general added the terms cu+ xC„ +2 ... c„ +m ,
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producing respectively the returns rn+1 ... rn + m, an effect which will not

be confined to the estate of the proprietor who has become an absentee.

The rate of profit will be lowered from q
- 1 to q'

—
1, where q' is

determined by the least return which is now made by an unit of capital ;

the whole rental of H will be increased, and the income of the proprietor

will be raised from

R = X<r -q), to R, = Vn+mc(r - q)

whence R-R = *•«; c(r-q) + (q
-
q')Xc,

which will be the gain of the proprietor. The treasury of H will lose

t2
l

„c(r
—

q) + xS<r. Foreign treasuries will gain R 2>/ — 2/)2>7, Rm,
&c, being the import duties successively paid on R and its equivalents.

If the same amount of commercial capital be required to export

R as was required to export Sp, and import its equivalent, C3 + C'3 will

be unaffected ; but if a different amount, and if the owners of this capital

be residents of H, then a portion of C3 + C"3 may be diverted to the

same employments as C2 + C2 have been compelled to seek ;
or a portion

of C»+ C"2 may be employed as commercial capital. The effects of non-

residence will thus be increased or diminished in degree, but will continue

to be the same in kind.

The distinction between a country which exports manufactures and

one that exports raw produce is not a necessary one, though it may

generally exist. The accurate enunciation of the result appears to be,

that beyond the loss to the revenue the absenteeism of proprietors can

only impair the resources of a community when it forces capital from

a more to a less profitable employment.

As regards the effect on F, the country to which the proprietor has

removed, the nature of the products in which his rent will be imported

is independent of the nature of those he consumes, as well as of those

in which it was produced. The presence of an individual who is without

capital, but who is entitled to an income, will therefore create a demand for

the employment of capital in producing the commodities he requires.

This capital will be drawn from investments where its employment

produces the least return. There will be a gain in direct taxes paid by
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the immigrant, and beyond this there will be a gain, if supplying his wants

afford a more profitable employment for capital than that from "which it

is withdrawn. This will not necessarily be the case, since the importation

of the income may have rendered some species of home production un-

profitable, and the demand for capital being thus accompanied by its

disengagement, the rate of profit may be unaffected. In the case in

which F imports raw produce, there will be an abstraction of capital

from its production at home.

If then cx c2 ...c„ be portions of capital, the units of which yielded

before the withdrawal rx r% ...rv respectively of produce, r, r2 ...rv being
a decreasing series, and if c^ +J ... c„ be withdrawn, the rate of profit being

changed from q to q x, the whole rental of F will be reduced from

Tvc(r-q), to ^c(r-ql),

and therefore diminished by

'*?*€(*
-

q) + (<?'
-

q)%e.

If the imports of F be made in manufactures, there will not in general

be any increase of wealth consequent on the residence in F of the pro-

prietor whose home is H, beyond the direct taxes he pays; but there

will be a substitution of a portion of income obtained without labour for

an equal portion obtained by labour.

The reason why these results contradict general opinion on the subject

is this : we are compelled, as preliminary to our investigations, to limit

by definition the meaning of the terms we employ. The proprietor,

in the vocabulary of the political economist, is simply the individual

entitled to a certain income when it can be realized, and constantly

either anticipating that income, or devoting it when received to the

purchase of products whose creation rendered the employment of the

capital of others necessary ; his absence therefore does not involve any
removal of capital, and consequently does not diminish the means of

supporting human life. It has also in this investigation been supposed

that he and his dependents expend the whole income to which he is

entitled, without leaving any trace of that expenditure in the shape

of capital accumulated, with a view either to durable or prospective

improvement, or to profit. This supposition must have been tacitly

Vol. VII. Part II. BB
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made whenever the wealth of a country has been pronounced to be un-

affected by the non-residence of its landlords.

Let us now suppose a portion of the proprietor's income to have been,

by himself or by his dependents, either accumulated or itself employed
as capital in producing the commodities for which it is exchanged. Call

this portion a, and let a part of it (1
-

/) a be expended without accumu-

lation, and a part la be employed as capital with a view to profit. If then

the rate of profit continued constant, and the whole of the proceeds of

la were employed as capital, we should have had in the x + 1
th

year
to expend on labour, instead of a,

"{
l

f=T +{1 -
l)
}-

and the fund for employing labour will therefore have been at the

commencement of this year diminished by qla.± —
.

Or, if we suppose the rate of accumulation in any one year to be

changed to a vth

part of what it was in the preceding, from an alteration

in the rate of profit, or from a different proportional part of that which

is produced being accumulated ; the fund for employing labour will be

at the end of the first, second,.... years, instead of

a, a{l + lq\, a\\ + l(q + q
2

)}, &c a, «(1 + Iqv), a \1 + l(qv
2 + ^V"1

" 2

)!, &c. ;

and the loss to this fund during the x + 1
th

year would be

a{l + llL(qv
2

)*'*}, y to be taken from x - 1 to 1.

This expression may be made to include the loss of the proprietor's

services as a skilled labourer.

But further, a consequence of the absence of the proprietor may be the

removal of a portion of the capital which that absence has forced into new

investments, and the destruction of another portion. Of the capital C2 + C2\

then, let the partmC2 + nC2

'

be removed without a change of residence of the

owners, and the part m'C2 + n'd' be either destroyed or removed in such

a way, that its profit is no longer expended in H ; and let the fractional

parts X, X' respectively of these have been employed in producing capital,

the remainder having been expended without accumulation.
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Then the resultant loss to the community from the latter part will be

(1 -X)\mCi + n [A, -(q-l) C,']} + (1
-

X') (m'C2 q + n'.A,) ;

and from the former part, at beginning of 1st year,

XmQ + X'm'C2 ;

at beginning of 2nd year,

XmC% . q + X'm'Q . q + \n {A 2
-

(q
-

1) Cs'} + X'ra,^ ;

at beginning of 3rd year,

XmCtfv + X'm'Crfv + Xn {A,q
-

{qv
-

1) Q'q] + X'n^qvi

x-i
at beginning of x + 1

th

year,

{(Xm + X'm') Qqif-* + (Xn + X'n'v*-
l)A2

- Xn (qtf-
1 - 1) C^\ {qv~)*-K

Hence, during the #+l th

year, the whole possible loss of income will

be:—
From expenditure of Proprietor, «{1 + l^=x . x(qv

*
)"-"}.

From Capital removed or destroyed whose profits would have been

expended without accumulation,

(m + m'q) C2
— n (q

— 1) C8

'

+ {n + n) A2 + X\n(q -
1) C2

' -mCt
- hA^

- X' {m'&q + n'A
2).

From Capital removed or destroyed whose profits would have been

accumulated,
x— 2

{X [(mC2
- n C,') qv*-

1 + n (CV+ A,)] + X'(m'C2q + n xA^v*"\ (qv—)*-
1
.

The greatest possible loss in this year, when v, I, m', n', X', each = 1, and

.•. m, n each = 0, will be

and the least when /, X, X', each = 0,

a + (m + m t q) C2
- n (q

—
1) C/ + (n + n') Ar

As far as the destruction of Capital is concerned the investigation, of

course, applies to the case of proprietors becoming absentees, and not of

their continuing so.

The general effects of absenteeism may be thus enunciated. There will

in all cases be a loss to the home-revenue in those direct taxes whose

payment can be evaded by absence. There will, whenever there are

duties on importation and not on exportation, be a further loss of the

BBS
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import-duty paid on the foreign productions which the proprietor consumed

when at home.

Beyond this there will be a diminution of the aggregate income

of the community whenever the capital that is disengaged by the ab-

senteeism is forced into less profitable employments than those it previously

occupied, and in no other case. When therefore the country from which

the proprietor absents himself exports raw produce, there will generally,

though not necessarily, be a loss beyond the loss to the revenue, and this

loss will be accompanied by a general increase of rental. When it exports

manufactures, there will not in general be any loss beyond that to the

revenue.

There will however in all cases be this further and very important
effect : though the income which the proprietor removes may be replaced,

it must be replaced by labour, and there will therefore be substituted

for the leisure class, which a part of that income maintained, a class

who must by their own exertions produce the incomes on which they

subsist; and there is nothing in the conditions of the problem to limit

the extent to which the subdivision of income may, among the members

of this class, be carried, or to fix the minimum that may be enjoyed

by each.

It is necessary to the truth of these results, that the withdrawal of

the proprietor should cause no removal of capital, that any part of the

proprietor's income which was not expended should still be saved at

home, and that no part should have been consumed without calling

for the employment of capital.

In applying the result to any particular country, the first step is to

decide how far, in the case of its absentees, these conditions are fulfilled
;

if they be not fulfilled, or if the individuals who remove had in any

degree the qualities of productive labourers, the wealth of the community
must be impaired by their absence ; and the injury is capable of increasing

with time to an indefinite extent.

J. TOZER.

Caius College, Cambridge,

March 16, 1840.



XII. Demonstration that all Matter is heavy. By the Rev. William

Whewell, B.D. Fellow of Trinity College and Professor of Moral

Philosophy.

[Read February 22, 184].]

The discussion of the nature of the grounds and proofs of the most

general propositions which the physical sciences include, belongs rather

to Metaphysics than to that course of experimental and mathematical

investigation by which the sciences are formed. But such discussions seem

by no means unfitted to occupy the attention of the cultivators of physical

science. The ideal, as well as the experimental side of our knowledge
must be carefully studied and scrutinized, in order that its true import may
be seen ;

and this province of human speculation has been perhaps of late

unjustly depreciated and neglected by men of science. Yet it can be

prosecuted in the most advantageous manner by them only : for no one can

speculate securely and rightly respecting the nature and proofs of the truths

of science without a steady possession of some large and solid portions of

such truths. A man must be a mathematician, a mechanical philosopher,

a natural historian, in order that he may philosophize well concerning

mathematics, and mechanics, and natural history ;
and the mere metaphy-

sician who without such preparation and fitness sets himself to determine

the grounds of mathematical or mechanical truths, or the principles of

classification, will be liable to be led into error at every step. He must

speculate by means of general terms, which he will not be able to use as

instruments of discovering and conveying philosophical truth, because he

cannot, in his own mind, habitually and familiarly, embody their import in

special examples.

Acting upon such views, I have already laid before the Philosophical

Society of Cambridge essays on such subjects as I here refer to
; especially a
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memoir " On the Nature of the Truth of the Laws of Motion," which was

printed by the Society in its Transactions. This memoir appears to have

excited in other places, notice of such a kind as to shew that the minds of

many speculative persons are ready for and inclined towards the discussion

of such questions. I am therefore the more willing to bring under con-

sideration another subject of a kind closely related to the one just men-

tioned.

The general questions which all such discussions suggest, are (in the

existing phase of English philosophy) whether certain proposed scientific

truths, (as the laws of motion,) be necessary truths ; and if they are neces-

sary, (which 1 have attempted to shew that in a certain sense they are,) on

what ground their necessity rests. These questions may be discussed in a

general form, as I have elsewhere attempted to shew. But it may be

instructive also to follow the general arguments into the form which they
assume in special cases ; and to exhibit, in a distinct shape, the incongrui-
ties into which the opposite false doctrine leads us, when applied to par-
ticular examples. This accordingly is what I propose to do in the present

memoir, with regard to the proposition stated at the head of this paper,

namely, that all matter is heavy.

At first sight it may appear a doctrine altogether untenable to assert

that this proposition is a necessary truth : for, it may be urged, we have no

difficulty in conceiving matter which is not heavy ; so that matter without

weight is a conception not inconsistent with itself; which it must be if the

reverse were a necessary truth. It may be added, that the possibility of

conceiving matter without weight was shewn in the controversy which

ended in the downfall of the phlogiston theory of chemical composition ;

for some of the reasoners on this subject asserted phlogiston to be a body
with positive levity instead of gravity, which hypothesis, however false,

shews that such a supposition is possible. Again, it may be said that

weight and inertia are two separate properties of matter : that mathemati-

cians measure the quantity of matter by the inertia, and that we learn by

experiment only that the weight is proportional to the inertia ; Newton's

experiments with pendidums of different materials having been made with

this very object.
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I proceed to reply to these arguments. And first, as to the possibility of

conceiving matter without weight, and the argument thence deduced, that

the universal gravity of matter is not a necessary truth, I remark, that it is

indeed just, to say that we cannot even distinctly conceive the contrary of

a necessary truth to be true; but that this impossibility can be asserted only
of those perfectly distinct conceptions which result from a complete deve-

lopement of the fundamental idea and its consequences. Till we reach this

stage of developement, the obscurity and indistinctness may prevent our

perceiving absolute contradictions, though they exist. We have abundant

store of examples of this, even in geometry and arithmetic; where the

truths are universally allowed to be necessary, and where the relations which

are impossible, are also inconceivable, that is, not conceivable distinctly. Such

relations, though not distinctly conceivable, still often appear conceivable

and possible, owing to the indistinctness of our ideas. Who, at the first

outset of his geometrical studies, sees any impossibility in supposing the

side and the diagonal of a square to have a common measure? Yet they
can be rigorously proved to be incommensurable, and therefore the attempt

distinctly to conceive a common measure of them must fail. The attempts
at the geometrical duplication of the cube, and the supposed solutions, (as

that of Hobbes) have involved absolute contradictions ; yet this has not

prevented their being long and obstinately entertained by men, even of

minds acute and clear in other respects. And the same might be shewn to

be the case in arithmetic. It is plain, therefore, that we cannot, from the

supposed possibility of conceiving matter without weight, infer that the

contrary may not be a necessary truth.

Our power of judging, from the compatibility or incompatibility of our

conceptions, whether certain propositions respecting the relations of ideas

are true or not, must depend entirely, as I have said, upon the degree of

developement which such ideas have undergone in our minds. Some of

the relations of our conceptions on any subject are evident upon the first

steady contemplation of the fundamental idea by a sound mind : these are

the axioms of the subject. Other propositions may be deduced from the

axioms by strict logical reasoning. These propositions are no less necessary

than the axioms, though to common minds their evidence is very different.

Yet as we become familiar with the steps by which these ulterior truths are
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deduced from the axioms, their truth also becomes evident, and the contrary

becomes inconceivable. When a person has familiarized himself with the

first twenty-six propositions of Euclid, and not till then, it becomes evident

to him, that parallelograms on the same base and between the same parallels

are equal ; and he cannot even conceive the contrary. When he has a little

further cultivated his geometrical powers, the equality of the square on the

hypothenuse of a right-angled triangle to the squares on the sides, becomes

also evident ; the steps by Avhich it is demonstrated being so familiar to the

mind as to be apprehended without a conscious act. And thus, the contrary

of a necessary truth cannot be distinctly conceived ; but the incapacity of

forming such a conception is a condition which depends upon cultivation,

being intimately connected with the power of rapidly and clearly perceiving

the connection of the necessary truth under consideration with the elemen-

tary principles on which it depends. And thus, again, it may be that there

is an absolute impossibility of conceiving matter without weight ; but then,

this impossibility may not be apparent, till we have traced our fundamental

conceptions of matter into some of their consequences.

The question then occurs, whether we can, by any steps of reasoning,

point out an inconsistency in the conception of matter without weight.

This I conceive we may do, and this I shall attempt to shew.

The general mode of stating the argument is this :
—the quantity of

matter is measured by those sensible properties of matter which undergo

quantitative addition, subtraction and division, as the matter is added, sub-

tracted and divided. The quantity of matter cannot be known in any other

way. But this mode of measuring the quantity of matter, in order to be

true at all, must be universally true. If it were only partially true, the

limits within which it is to be applied would be arbitrary ; and therefore

the whole procedure would be arbitrary, and, as a method of obtaining

philosophical truth, altogether futile.

We may unfold this argument further. Let the contrary be sup-

posed, of that which we assert to be true : namely, let it be supposed that

while all other kinds of matter are heavy, (and of course heavy in propor-

tion to the quantity of matter) there is one kind of matter which is abso-

lutely destitute of weight; as, for instance, phlogiston, or any other element.
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Then where this weightless element (as we may term it) is mixed with

weighty elements, we shall have a compound, in which the weight is no

longer proportional to the quantity of matter. If, for example, 2 measures of

heavy matter unite with 1 measure of phlogiston, the weight is as 2, and

the quantity of matter as 3. In all such cases, therefore, the weight ceases

to be the measure of the quantity of matter. And as the proportion of the

weighty and the weightless matter may vary in innumerable degrees in

such compounds, the weight affords no criterion at all of the quantity of

matter in them. And the smallest admixture of the weightless element is

sufficient to prevent the weight from being taken as the measure of the

quantity of matter.

But on this hypothesis, how are we to distinguish such compounds from

bodies consisting purely of heavy matter ? How are we to satisfy ourselves

that there is not, in every body, some admixture, small or great, of the

weightless element ? If we call this element phlogiston, how shall we know
that the bodies with which we have to do are, any of them, absolutely free

from phlogiston ?

We cannot refer to the weight for any such assurance; for by supposition

the presence and absence of phlogiston makes no difference in the weight.

Nor can any other properties secure us at least from a very small admixture;

for to assert that a mixture of 1 in 100 or 1 in 10 of phlogiston would

always manifest itself in the properties of the body, must be an arbitrary

procedure, till we have proved this assertion by experiment : and we cannot

do this till we have learnt some mode of measuring the quantities of matter

in bodies and parts of bodies ; which is exactly what we question the possi-

bility of, in the present hypothesis.

Thus, if we assume the existence of an element, phlogiston, devoid of

weight, we cannot be sure that every body does not contain some portion of

this element ; while we see that if there be an admixture of such an element,

the weight is no longer any criterion of the quantity of matter. And thus

we have proved, that if there be any kind of matter which is not heavy, the

weight can no longer avail us, in any case or to any extent, as a measure of

the quantity of matter.

Vol. VII. Part II. CC
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I may remark, that the same conclusion is easily extended to the case in

which phlogiston is supposed to have absolute levity ; for in that case, a

certain mixture of phlogiston and of heavy matter would have no weight,

and might be substituted for phlogiston in the preceding reasoning.

I may remark, also, that the same conclusion would follow by the same

reasoning, if any kind of matter, instead of being void of weight, were

heavy, indeed, but not so heavy, in proportion to its quantity of matter, as

other kinds.

On all these hypotheses there would be no possibility of measuring quan-

tity of matter by weight at all, in any case, or to any extent.

But it may be urged, that we have not yet reduced the hypothesis of

matter without weight to a contradiction ; for that mathematicians measure

quantity of matter, not by weight, but by the other property, of which we
have spoken, inertia.

To this I reply, that, practically speaking, quantity of matter is always
measured by weight, both by mechanicians and chemists : and as we have

proved that this procedure is utterly insecure in all cases, on the hypothesis

of weightless matter, the practice rests upon a conviction that the hypo-
thesis is false. And yet the practice is universal. Every experimenter
measures quantity of matter by the balance. No one has ever thought of

measuring quantity of matter by its inertia practically : no one has con-

structed a measure of quantity of matter in which the matter produces its

indications of quantity by its motion. When we have to take into account

the inertia of a body, we inquire what its weight is, and assume this as the

measure of the inertia; but we never take the contrary course, and ascertain

the inertia first in order to determine by that means the weight.

But it may be asked, Is it not then true, and an important scientific

truth, that the quantity of matter is measured by the inertia ? Is it not true,

and proved by experiment, that the weight is proportional to the inertia f

If this be not the result of Newton's experiments mentioned above, what, it

may be demanded, do they prove ?

To these questions I reply : It is true that quantity of matter is mea-

sured by the inertia, for it is true that inertia is as the quantity of matter.
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This truth is indeed one of the laws of motion. That weight is propor-

tional to inertia is proved by experiment, as far as the laws of motion are

so proved : and Newton's experiments prove one of the laws of motion, so

far as any experiments can prove them, or are needed to prove them.

That inertia is proportional to weight, is a law equivalent to that law

which asserts, that when pressure produces motion in a given body, the

velocity produced in a given time is as the pressure. For if the velocity be

as the pressure, when the body is given, the velocity will be constant if the

inertia also be as the pressure. For the inertia is understood to be that pro-

perty of bodies to which, ceteris paribus, the velocity impressed is inversely

proportional. One body has twice as much inertia as another, if, when the

same force acts upon it for the same time, it acquires but half the velocity.

This is the fundamental conception of inertia.

In Newton's pendulum experiments, the pressure producing motion was

a certain resolved part of the weight, and was proportional to the weight.

It appeared by the experiments, that whatever were the material of which

the pendulum was formed, the rate of oscillation was the same; that is, the

velocity acquired was the same. Hence the inertia of the different bodies

must have been in each case as the weight : and thus this assertion is true of

all different kinds of bodies.

Thus it appears that the assertion, that inertia is universally proportional

to weight, is equivalent to the law of motion, that the velocity is as the

pressure. The conception of inertia (of which, as we have said, the funda-

mental conception is, that the velocity impressed is inversely proportional

to the inertia,) connects the two propositions so as to make them identical.

Hence our argument with regard to the universal gravity of matter

brings us to the above law of motion, and is proved by Newton's experiments

in the same sense in which that law of motion is so proved.

Perhaps some persons might conceive that the identity of weight and

inertia is obvious at once ; for both are merely resistance to motion ;
—

inertia,

resistance to all motion (or change of motion)
—

weight, resistance to motion

upwards.

But there is a difference in these two kinds of resistance to motion. Inertia

is instantaneous, weight is continuous resistance. Any momentary impulse
c C2
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which acts upon a free body overcomes its inertia, for it changes its motion
;

and this change once effected, the inertia opposes any return to the former

condition, as well as any additional change. The inertia is thus overcome by
a momentary force. But the weight can only be overcome by a continuous

force like itself. If an impulse act in opposition to the weight, it may for a

moment neutralize or overcome the weight ; but if it be not continued, the

weight resumes its effect, and restores the condition which existed before

the impulse acted.

But weight not only produces rest, when it is resisted, but motion, when
it is not resisted. Weight is measured by the reaction which would balance

it; but when unbalanced, it produces motion, and the velocity of this

motion increases constantly. Now what determines the velocity thus pro-
duced in a given time, or its rate of increase ? What determines it to have

one magnitude rather than another ? To this we must evidently reply, the

inertia. When weight produces motion, the inertia is the reaction which

makes the motion determinate. The accumulated motion produced by the

action of unbalanced weight is as determinate a condition as the equili-

brium produced by balanced weight. In both cases the condition of the

body acted on is determined by the opposition of the action and reaction.

Hence inertia is the reaction which opposes the weight, when unba-

lanced. But by the conception of action and reaction, (as mutually deter-

mining and determined,) they are measured by each other
;
and hence the

inertia is necessarily proportional to the weight.

But when we have reached this conclusion, the original objection may
be again urged against it. It may be said, that there must be some fallacy

in this reasoning, for it proves a state of things to be necessary when
we can so easily conceive a contrary state of things. Is it denied, the

opponent may ask, that we can readily imagine a state of things in

which bodies have no weight? Is not the uniform tendency of all bodies

in the same direction not only not necessary, but not even true? For

they do in reality tend, not with equal forces in parallel lines, but to

a center with unequal forces, according to their position : and we can

conceive these differences of intensity and direction in the force to be
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greater than they really are; and can with equal ease suppose the force

to disappear altogether.

To this I reply, that certainly we may conceive the weight of bodies

to vary in intensity and direction, and by an additional effort of imagi-

nation, may conceive the weight to vanish : but that in all these sup-

positions, even in the extreme one, we must suppose the rule to be universal.

If any bodies have weight, all bodies must have weight. If the direction

of weight be different in different points, this direction must still vary

according to the law of continuity ; and the same is true of the intensity

of the Aveight. For if this were not so, the rest and motion, the velocity

and direction, the permanence and change of bodies, as to their mechanical

condition, would be arbitrary and incoherent: they would not be subject

to mechanical ideas ; that is, not to ideas at all : and hence these conditions

of objects would in fact be inconceivable. In order that the universe

may be possible, that is, may fall under the conditions of intelligible

conceptions, we must be able to conceive a body at rest. But the rest of

bodies (except in the absolute negation of all force) implies the equilibrium

of opposite forces. And one of these opposite forces must be a general

force, as weight, in order that the universe may be governed by general

conditions. And this general force, by the conception of force, may

produce motion, as well as equilibrium ; and this motion again must

be determined, and determined by general conditions; which cannot be,

except the communication of motion be regulated by an inertia propor-

tional to the weight.

But it will be asked, Is it then pretended that Newton's experiment,

by which it was intended to prove inertia proportional to weight, does

really prove nothing but what may be demonstrated a priori ? Could

we know, without experiment, that all bodies,—gold, iron, wood, cork,—
have inertia proportional to their weight? And to this we reply, that

experiment holds the same place in the establishment of this, as of the

other fundamental doctrines of mechanics. Intercourse with the external

world is requisite for developing our ideas; measurement of phenomena
is needed to fix our conceptions and to render them precise: but the

result of our experimental studies is, that we reach a position in which

our convictions do not rest upon experiment. We learn by observation
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truths of which we afterwards see the necessity. This is the case with

the laws of motion, as I have repeatedly endeavoured to shew. The same

will appear to be the case with the proposition, that bodies of different

kinds have their inertia proportional to their weight.

For bodies of the same kind have their inertia proportional to their

weight, both quantities being proportional to the quantity of matter.

And if we compress the same quantity of matter into half the space,

neither the weight nor the inertia is altered, because these depend on

the quantity of matter alone. But in this way we obtain a body of

twice the density ; and in the same manner we obtain a body of any other

density. Therefore whatever be the density, the inertia is proportional

to the quantity of matter. But the mechanical relations of bodies cannot

depend upon any difference of kind, except a difference of density. For

if we suppose any fundamental difference of mechanical nature in the

particles or component elements of bodies, we are led to the same con-

clusion, of arbitrary, and therefore impossible, results, which we deduced

from this supposition with regard to weight. Therefore all bodies of

different density, and hence, all bodies whatever, must have their inertia

proportional to their weight.

Hence we see, that the propositions, that all bodies are heavy, and that

inertia is proportional to weight, necessarily follow from those fundamental

ideas which we unavoidably employ in all attempts to reason concerning
the mechanical relations of bodies. This conclusion may perhaps appear the

more startling to many, because they have been accustomed to expect that

fundamental ideas and their relations should be self-evident at our first

contemplation of them. This, however, is far from being the case, as I have

already shewn. It is not the first, but the most complete and developed

condition of our conceptions which enables us to see what are axiomatic

truths in each province of human speculation. Our fundamental ideas

are necessary conditions of knowledge, universal forms of intuition,

inherent types of mental developement ; they may even be termed, if

any one chooses, results of connate intellectual tendencies ; but we cannot

term them innate ideas, without calling up a large array of false opinions.

For innate ideas were considered as capable of composition, but by no

means of simplification : as most perfect in their original condition ; as to
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be found, if any where, in the most uneducated and most uncultivated

minds
;

as the same in all ages, nations, and stages of intellectual culture ;

as capable of being referred to at once, and made the basis of our reasonings,
without any special acuteness or effort : in all which circumstances the

Fundamental Ideas of which we have spoken, are opposed to Innate Ideas

so understood.

I shall not, however, here prosecute this subject. I will only remark,

that Fundamental Ideas, as we view them, are not only not innate, in any
usual or useful sense, but they are not necessarily ultimate elements of our

knowledge. They are the results of our analysis so far as we have yet

prosecuted it ; but they may themselves subsequently be analysed. It may
hereafter appear, that what we have treated as different Fundamental Ideas

have, in fact, a connexion, at some point below the structure which we
erect upon them. For instance, we treat of the mechanical ideas of force,

matter, and the like, as distinct from the idea of substance. Yet the prin-

ciple of measuring the quantity of matter by its weight, which we have

deduced from mechanical ideas, is applied to determine the substances

which enter into the composition of bodies. The idea of substance supplies

the axiom, that the whole quantity of matter of a compound body is equal
to the sum of the quantities of matter of its elements. The mechanical

ideas of force and matter lead us to infer that the quantity both of the

whole and its parts must be measured by their weights. Substance may,
for some purposes, be described as that to which properties belong ; matter

in like manner may be described as that which resists force. The former

involves the Idea of permanent Being ; the latter, the Idea of Causation.

There may be some elevated point of view from which these ideas may
be seen to run together. But even if this be so, it will by no means affect

the validity of reasonings founded upon these notions, when duly deter-

mined and developed. If we once adopt a view of the nature of knowledge
which makes necessary truth possible at all, we need be little embarrassed

by finding how closely connected different necessary truths are
;
and how

often, in exploring towards their roots, different branches appear to spring
from the same stem.

W. WHEWELL.
Grange,

Aug. SI, 1840.





XIII. On the Position of the Axes of Optical Elasticity in Crystals

belonging to the Oblique-Prismatic System. By W. H. Miller,
M.A. F.R.S. Fellow and Tutor of St. John's College, and Pro-

fessor of Mineralogy in the University of Cambridge.

[Read March 21, 1836.]

In a Memoir printed in the 5th Volume of the Cambridge Trans-

actions it is stated, that in crystals belonging to the Oblique-Prismatic

System one of the three rectangular axes of optical elasticity was

always found to coincide with that crystallographic axis (Y, Y') which,

in crystals of this system, is perpendicular to the other two: but that

the positions of the other axes of optical elasticity (££', ££') had no

known relation to the form of the crystal. In some oblique-prismatic

crystals, however, it was found that one of the axes of optical elasticity

f £'» £T was also the axis of a principal zone. In the crystals which

I have examined since the publication of the paper already alluded to,

by the same method, this coincidence is found to occur less frequently.

Upon the whole, however, there seems to be no reason for supposing

it accidental in the instances (five or six out of twenty) in which it

has been observed ; but rather that it is a particular case of some

general law connecting the form and optical properties of crystals, in

the discovery of which it is hoped the observations here recorded may
be in some degree instrumental.

The crystals selected for examination are taken principally from

among those which have been described by Mr Brooke in the Annals

of Philosophy for 1823 and 1824. The mutual inclination of two faces

is expressed by the angle between their normals, or the angular distance

of their "poles." An explanation of the notation in which the symbols
Vol. VII. Part II. DD
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of the simple forms are expressed, and of the method of representing
the form of a crystal by its

"
sphere of projection," will be found in

the Cambridge Transactions, Vol. V. p. 433. The velocity of light in

air divided by its velocity within the crystal, for a ray in the plane
of the optic axes, and polarized in the same plane, is denoted by ft.

I being the refracting angle of a prism having its edge perpendicular
to the plane of the optic axes, and D the minimum deviation of a ray
refracted through it, polarized in the plane of the optic axes, n sin 1 /
= sin ^ (D + I). The index of refraction of the oil used in some of

the observations is 1.4706 for the brightest rays of the spectrum, a, /3 ;

£, £, denote the extremities of radii of the sphere of projection drawn

parallel to the optic axes and axes of optical elasticity respectively.

(1). In Oxalic Acid, CH3
, the cleavages being

parallel to the faces m, mm' = 63°. 5', ee' = 34° . 32,

pa = 50°. 40', cp'
= 76°. 45', ac m 52°. 35', pm

= 81°. 34', am = 6l°.13',5, cm = 62°.55',5. The

symbols of the simple forms are, p {0 1},

m {1 1 0}, e {Oil}, a {10 1}, c {10 1}.

The apparent directions of the optic axes seen in oil through the faces p
lie in a plane perpendicular to the faces p, e, and make with each other an

angle of 115°. 30'. ^ = 1.499- Hence a/3 m 68°, and the axis of optical

elasticity £ coincides with the axis of the zone peep'.

(2). In Sphene, the faces being denoted by the same letters as in the

treatises of Mohs and Naumann, and the principal cleavages being parallel to

the faces I, y, #/=66 .54', y/=131°.21', fy>
= 85°.33',

yx = 21°.5', xp = 39°.19', pql = 85°. 10', pqt = 53°.36',

pqn = 28°. 6'. The symbols of the simple forms are,

q {0 1 0}, p {0 1}, / {1 1 0}, m {1 3 0}, r{0 1 1},

y {1 1}, x {1 02}, o {0 1 3}, t {1 2 1}, d {1 1 3},

n {I 2 3}, u {16 3}, / {T 1 2}, s {14 1}.

The apparent directions of the optic axes seen in water through the

faces x lie in a plane perpendicular to the faces xp, and make angles of
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about 18°. 40', with a normal to the face x. n = 1.631. Hence a/3 = 30°. 22',

and the axis of elasticity £ coincides with the axis of the zone xfq.

(3). In Phosphate of Soda, Na*PH*, according to Mitscherlich

(Annates de Chimie, Tome 19.) ur — 33°. 8', rp =
25°. 24', pf = 50°. 48', fb = 33°. 25', bu = 37°. 17',

dm = 33°. 55', di = 65". 4', dn = 53°. l£, dl = 52°. 9',

dt = 36°. 30', dk = 67°. 6', pt = 6T. 55', pn = 31°. 30',

pm —
73°. 3'. The symbols of the simple forms

are, k {10 0}, d {0 1 0}, p \0 1\, m \1 1 0},

n \1 11}, t {111}, A {201},/ {101}, /• {10 1},

Z {0 2 3}, k {3 1 3}, i {3 1 0}.

The optic axes lie in a plane perpendicular to the faces u, p, f. When
the crystal is immersed in oil, the apparent direction of the optic axis a seen

through the faces p makes an angle of 34°. 30' with a normal to p, and an

angle of 58°. 40' with the apparent direction of the optic axis /3 seen through
artificial surfaces nearly perpendicular to the optic axis (Z. n = 1.40 nearly.

Hence jo a
= 36°. 30', jo/3

= 93°. 10', /j£
= 64°.50'. Therefore the axis of

elasticity f very nearly coincides with the axis of the zone rnd. It is not

possible to determine the positions of the optic axes of phosphate of soda

very accurately on account of its feeble double refraction, the imperfection

of its surfaces, and its tendency to effloresce.

(4). In Acetate of Soda, NaAH6

, ap = 76".25', ph = 68".l&, ha =

35°. 15', mk = 42°. 15', pm = 75°. 35', pf= 420.43, pe = 60\ 22', pg =

81°.8',5. The symbols of the simple forms are, h {1 0}, i {0 10},

p\001\, a {201}, / {111}, e {111}, g {2 2 1}.

When the crystal is immersed in oil, the apparent

directions of the optic axes seen through a slice

bounded by artificial surfaces nearly parallel to the

faces a, make with each other an angle of 62°. 30';

and the apparent direction of the optic axis /3 seen

through artificial sections nearly perpendicular to fi,

makes an angle of 80°. 30', with a normal to p.

m = 1.464. Hence a/3 = 117°.10', p% = 11°.9', «£ = 2°. 26'.

DD 2
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(5). In Acetate of Oxide of Zinc, ZnAH\ the cleavage being parallel

to the face p, ph = 46°. 30', pc = 79°. 55', "mm' = 67°.24', pm = 67°.33',

pg = 7'5". 30', g-g-'
= 58°. 43'. The symbols of the simple forms are,

c {10 0}, j» {0 01$, h {101}, m |H 1}, g fill}-

The optic axes lie in a plane perpendicular to

the faces p, h, c. The apparent direction of the

optic axis a, seen in air through the faces p,
makes an angle of 50°. 15', with a normal to p.

When the crystal is immersed in oil, the apparent
directions of the optic axes seen through the

faces p, make with each other an angle of 79°. 15'.

P- 1.494. Hence p£= 11°. 16', A£=35°. 14', a/3 = 84°.30'.

(6). In Bicarbonate of Potash, KC2H, me =

53°. 15', ra* = 76°.35', mf= 127°.52', rf</'=42°.0'.

The symbols of the simple forms are, m {10 0},

t {0 1}, / {TO 1}, e {2 3}, d \\ 1 0}.

The apparent direction of the optic axis a seen

in air through the faces e, makes an angle of 56°. 45',

with a normal to e. The apparent directions of the optic axes seen in oil

through the faces e make with each other an angle of 83°. /x
= 1.482.

Hence ea = 48°. 21', e& = 47°. 53', e% = 6 '.28', a/3 = 81°. 38'.

(7). In Tartaric Acid, TH, mm' = 88°.30', ee'= 76°.30', pm = 97°. 10',

ph = 80°. 3'. The symbols of the simple forms are, h {100}, p {001},

m {1 1 0}, a {1 1}, e {Toi}, e {0 1 1}.

The apparent directions of the optic axes seen in

oil through artificial sections perpendicular to the faces

p, h, lie in a plane inclined at an angle of 69°. 30' to

the face p, and make with each other an angle of 1 03°.

/u= 1.542 nearly. Hence pi = 20°. 30', />£
= 10°. 33',

a/3= 96°. 36'.
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(8). In Pyroxene, the faces being denoted by the same letters

as in the treatises of Mohs and Naumann, the symbols

of the simple forms are, p {00 1}, I {0 10}, r {100},

m{110},/{8 10}, MI 01}, *{0 11}, u\21l\,
as {12 1}, o 1 2 1}, X {2 3 1}.

The optic axes lie in a plane parallel to the

face /. The apparent direction of the optic axis a

seen in air through sections perpendicular to the faces

m, m', makes an angle of 74° with a normal to /. The apparent
direction of the optic axis /3 seen in water through the faces r, r, makes

an angle of 27°, 40', with a normal tor. M = 1.680. Hence ar' = 80°.34',

/3/= 21°. 38', £r'= 56°. 6'.

The crystals of Pyroxene in which I first attempted to determine the

position of the optic axes were all twins composed of individuals of

unequal size, the twin-axis being perpendicular to the face r. Con-

sequently, a slice bounded by planes perpendicular to the faces m, m'

exhibited two systems of rings unequally bright, making with each

other an angle of 32°, which was bisected by the axis of the zone mr.

These rings were erroneously supposed to belong to the same crystal,

till the mistake was pointed out to me by Professor Norrenberg. The
best crystals which I have been able to procure for measurement give

pr = 74°. 20', nearly. In a twin crystal in Mr Brooke's collection,

the face t of one individual coincides accurately with the face p of

the other. This shews that Pyroxene may quantitatively be referred

to the right prismatic system. The position of the optic axes, as well

as the nature of the symmetry of the faces u, ss, o, X, prove, however,

clearly that it belongs to the oblique-prismatic system.

(9). In crystals of Sugar the faces are too uneven to admit of de-

termining the angles they make with each other

nearer than within, perhaps, half a degree of the truth.

a being the face parallel to which a very distinct

cleavage exists, mm =79°.20', ar= ll6°.40', «c = 75
n
.30',

nearly. The symbols of the simple forms are, a {10 0},

c {0 1}, r{l 1}, * {1 1}, n {0 1 1}, p {1 1 1}.
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The apparent directions of the optic axes a, /3, seen in oil through

the faces a, a, make angles of 1°.32' and 49°.58', with a normal to a.

iu
= 1.57. Hence a a = 1°.26\ fl/3

= 45°.50', a% = 22°. 12', r^ = 4°.28'.

(10). In Tartrate of Potash, KTH-, the cleavages being parallel to

m, t, me = 37°. 47', et = 52°.42', Z>6' = 45°.20'. The symbols of the

simple forms are, c \0 1 0}, e |0 l\, t \\ 1$,

IB {10 1}, * \0 1 1}.

The apparent directions of the optic axes seen in oil

through the faces t lie in a plane perpendicular to the

face c, making an angle of 67°. 30' with the face /.

They make with each other an angle of 64°. 45', and

therefore angles of 38°. 43', with a normal to t. n = 1.526

nearly. Hence, supposing a ray in the direction of the optic axes to

be refracted in the same manner as at the surface of glass, having 1.526

for its index of refraction, t% m 21°. 20', a/3 = 118° nearly.

The above assumption, though not strictly correct, will not occasion

any considerable error in the present instance. This appears to be the only

practicable method of determining (approximately) the positions of the

optic axes, when the plane in which they lie is not perpendicular to

the faces through which they are seen. It is used in the two following-

cases.

(11). In Chlorate of Potash, KCl, the cleavages being parallel to

the faces m, m', mm' = 104°. 0', ee' = 79°.30', pm = 74°.30'. The sym-

bols of the simple forms are, p J0 1J, m \1 10},

e {0 1 1}, c {I 1}.

The apparent directions of the optic axes seen in oil

through the faces p lie in a plane parallel to the axis of

the zone pc, making an angle of 52° with the face p,

and they make with each other an angle of 28°. 15'.

m = 1.507 nearly. Hence pi = 37°.42', a/3 - 152°.30'

nearly.



OF OPTICAL ELASTICITY IN OBLIQUE-PRISMATIC CRYSTALS. 215

(12). In Sulphate of Soda, Na iSu Hw
, hp = 72°. 16', pc=W-\5'

km m 40° . 12', kl = 22° . 54', ke = 49° . 54'. The

symbols of the simple forms are, k J01 Oj,

h {100}, p {001}, / {120}, e {Oil},
»i {11 0}.

The apparent directions of the optic axes

seen in oil through the faces h lie in a plane

making an angle of 78°. 30' with the face //, and

make with each other an angle of 97°. 30'.

n = 1.44 nearly. Hence h% = 12°. 24', a/3 = 80°. 26' nearly.

(13.) In Hydrous Oxalate of Lime, Ca C H, a new mineral species

described by Mr Brooke in the Philosophical Magazine for June 1840,

b being the face parallel to which a very distinct cleavage exists,

cm = 50°. 18', cf = 65°. 28, ca = 37°. 24', 5, cu = 31°. 3', cs = 28°. 41',

pm = 76°. 46', pb = 70°. 33', pern = 72°. 41'. The symbols of the

simple forms are, c {0 1 0}, p {0 1}, j» {11 0},

a \0 1 1}, b {1 1}, u {1 2 0}, / {1 1 2}, s \\ 3 2}.

The optic axes could not be seen
;
the position of

the axes of elasticity was however determined approx-

imately by placing the crystal in a polarizing apparatus,

having the planes of polarization and analyzation at

right angles to each other, with the face c perpen-
dicular to the axis of the instrument, and observing the position of the

face p when the crystal ceased to transmit light. In this manner it was
found that J| = 8°.

W. H. MILLER.





XIV. On a New Construction of the Going-Fusee. By G. B. Airy, Esq.
Astronomer Royal.

[Read March 2, 1840.]

I should not have presumed to occupy the time of the Cambridge Phi-

losophical Society with a mere description of a mechanical construction,

if I did not conceive that it might possess some interest for them, first,

as a modification of or rather a substitute for a contrivance, whose elegance
and importance have been universally acknowledged, but which fails

(from practical reasons only) in certain cases. And secondly, as an object

of local interest, the only existing application of the new construction

being in the mounting of the magnificent telescope, which the University
owes to the munificence of the Duke of Northumberland.

The object of the going-fusee is, as is well known, to maintain exactly

the same action (whatever its amount may be) upon the first wheel of

a clock, while the clock is being wound up, as while it is going in its

ordinary way : supposing that the time required for winding up is not

very long.

It was invented by Harrison ; and has always appeared to me one of

the most beautiful of the many beautiful contrivances in a highly-
finished time-keeper.

When I was arranging the clock-work for the Northumberland tele-

scope, I soon perceived that it would be necessary to depart from Harrison's

construction in the going-fusee part. This was rendered imperative by
the magnitude of the force which, as it appeared probable, would be re-

quired to maintain the motion of the clock. A strain of lOOlbs. on the

cord was to be provided for : and therefore the remontoir spring must

be strong enough to support lOOlbs. without breaking, yet sufficiently

Vol. VII. Part II. EE
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flexible and elastic to expand without great diminution of that force

through a sensible space. There is doubtless no difficulty in satisfying

these conditions in the case of a coach-spring, or where there is abundance

of room : but, where the spring must be contained within not a clock

but a clock-wheel, there is considerable difficulty. The only way in which

I could hope to use the principle, must be by adopting a barrel, ratchet,

click, and first wheel, exactly as in a kitchen -clock ; and removing the

ratchet-wheel of Harrison's fusee with its click and going-spring to the

spindle of the next wheel, where the forces are much diminished. But

here it would be necessary to use a spring which is coiled several times

round the spindle ; else, as this second wheel revolves more rapidly than

the first, the spring would be too much relaxed before the cessation of the

pressure of the hand allowed the weight to act again. The difficulty of

manufacturing the spring would be great, and in all contrivances re-

quiring a steel spring there was the risk of rust, against which I could not

hope to secure the machinery.

I might have adopted the contrivance known as the endless cord of

Huyghens, which has been employed in Fraunhofer's clocks. The only

objection to the use of this construction for the Northumberland clock

was, that the spikes in the gorge of the pulley, which are necessary to

prevent the cord from slipping, would speedily have torn the cord to

pieces, when a weight of 100 lb. was attached.

Abandoning the spring and the endless rope, my first idea was, to

use a new weight in such a manner as to produce exactly the same effect

and in the same place as Harrison's going-spring. Various constructions

presented themselves ; but those founded on the following principle, ap-

peared the most feasible :—The action of a spring may be exactly imitated

by that of a jointed lozenge : the two parts which are to be connected

by the spring being two opposite angles of the lozenge, and the two

other angles being pulled apart by the action of constant weights. In

the application of this principle, the parts to be connected by the spring

or lozenge would be on the circumference of the barrel and wheel, and

the two other angles would therefore be on the same circumference : but

there was no difficulty in effecting the pulling apart of these angles by
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a force in the axis of the barrel, which, by a proper application of bell-

cranks, could easily be effected by a weight. But the construction pro-

duced a trifling friction in the ordinary going of the clock, and was not

elegant, and I therefore abandoned it.

Finally, I had the good fortune to imagine a construction entirely dif-

ferent, with which, in all respects, I am fully satisfied. It is based upon
the following principle. If a lever abc, fig. 1, is used to produce pressure

at the point c, b being its fulcrum, and a the point at which the force is

applied : then the same effect may be produced on c, by making a the

fulcrum, provided that at b we apply a force exactly equal and opposite to

the pressure which the fulcrum at b sustained when the force was applied
at a.

To apply this to the first wheel of a clock. Suppose (for simplicity of

present consideration and of future construction) the axes of the first wheel

and second wheel to be in the same horizontal plane. Let a fig. 2. be the

point of the barrel from which the weight depends : b its center, c the

point at which the toothed wheel, connected with the barrel, acts upon the

pinion of the next wheel. Then, during the ordinary action of the clock,

abc may be considered as a lever, of which b is the fulcrum, sustaining a

downwards pressure, a the point of application of the force, and c the point

on which it is to produce an effect. Suppose, in the operation of winding

up, the force acting at a to be removed. Then, by the theorem which I

have lately mentioned, the same effect may still be produced on c; pro-

vided that we can so arrange our mechanism that a shall, during the

operation of winding up, become the fulcrum ; and that a force shall act

upwards at b, exactly equal to the downwards pressure which b sustained

during the clock's ordinary motion, the point b being not fixed (as before)

but moveable. The mechanism necessary for this purpose is extremely

simple.

Instead of supposing the pivot b of the barrel to turn in a hole in the

clock-plate, let it turn in a hole in the arm of a frame, fig. 3, of which one

side is bad, and which is itself a lever whose fulcrum projected in a is the

line joining two pins turning in holes of the clock-plate, corresponding
E E2
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exactly in position to the point of the barrel from which the weight W
depends. Suppose another weight w to be suspended from d, of such

magnitude that it will exactly support (acting with the fulcrum a) the

pressure which the lever-frame sustains at b. It will readily be remarked,

that if the lever-frame be bent, as shewn in the figure, no nice adjustment
of the weight of w is necessary. For, if the weight ofw be a little too small,

the preponderance of the pressure at b will depress b, and will thereby throw

d so far in the horizontal direction that the increased power of the lever ad
will enable the same weight w to balance the pressure at b. In like

manner, if the weight w be somewhat too large, the approach of d in the

horizontal direction, towards the vertical passing through a, will diminish

its statical momentum, and thereby restore the equilibrium. The effect

of either of these changes on the action of the wheel-teeth is to withdraw

them from the teeth of the pinion by an almost infinitesimal quantity, of

which the effect in practice is wholly insignificant.

We may therefore now be assured that we have provided a force acting

upwards at b, exactly equal and opposite to the pressure which the fulcrum

at b sustains during the ordinary motion of the barrel (inasmuch as our

force does veritably support that pressure during the ordinary motion of

the barrel), and competent to act with insignificant diminution of amount

even if b be moved. One condition therefore of the change of lever-action

is entirely satisfied. The other condition requires that the point a of the

toothed-wheel shall be made, during the process of winding up, the ful-

crum upon which the toothed-wheel turns for the time. But the corre-

sponding point a of the lever-frame is the fulcrum upon which the lever-

frame is able to turn for the time. Consequently all that is necessary to

satisfy this condition is, to contrive that, during the process of winding up,

the toothed-wheel shall be so connected with the lever-frame that it shall

have absolutely the same motion which the lever-frame has on the fulcrum

a; or, in other words, that the toothed-wheel and lever-frame shall (for the

time) move all in one piece. All that is requisite for this purpose is, to

make a ratchet in the inside of the ring of the toothed-wheel ;
and to make

a click f to fall in the teeth of the ratchet, its center of motion being some

convenient pointy of the lever-frame. For then, upon taking off the pres-

sure of W and the consequent pressure downwards on b, the pressure of w
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will immediately depress d till the end of/"is firmly lodged upon a tooth

of the ratchet : and then, inasmuch as the toothed-wheel is carried by the

lever-frame at its center b and is thrust by the clickf connected with the

lever-frame, the continued descent of d will carry the toothed-wheel in just

the same manner as if it were part of the lever-frame ; and therefore the

toothed-wheel will for the time revolve about a.

The two conditions therefore, which are required in the change of forces

acting on the lever ab c are entirely satisfied
; and therefore the pressure at

c during the winding up of the clock will be the same as during the ordi-

nary going of the clock.

The following description of the movement may perhaps facilitate the

understanding of the action of this mechanism.

While the clock is going in its ordinary way, the weight W descends,

turning the barrel and wheel in such a direction that the teeth of the inter-

nal ratchet glide under the clickf without producing on it or sustaining

from it any effect. The action of the weight W and the resistance of the

pinion at c produce a certain pressure on the lever-frame at b which causes

the end d to assume a determinate position, in which it remains without

motion so long as the weight W acts.

As soon as the pressure of W is relieved, the pressure on b ceases ; the

weight w preponderates, the end d drops, the end off is thrust firmly

against a tooth of the ratchet, and the continued action of w causes the

toothed wheel to turn in a piece with the lever-frame round the center a,

and thereby to produce a pressure at c, which, if a correspond exactly to

the place at which W acted on the barrel, is exactly equal to the pressure

which formerly actd at c.

If the action of W be suspended for a long time, the continued descent

of d will bring d nearer to the vertical passing through a, and will thereby
diminish the statical moment of w, and consequently will diminish the

pressure at c. In this regard the action of this mechanism is exactly similar

to that of the going-spring in Harrison's going-fusee.



222 Mb AIRY ON A NEW CONSTRUCTION OF THE GOING-FUSEE.

One important point to which I have not yet alluded is the manner of

winding up. It has been supposed all along that the act of winding up

simply relieves the barrel from the pressure of W. This cannot be done

by a square and winch upon the axis b in the usual way. For the action

of the hand in winding up would then produce a force which may be

resolved into a couple acting on the barrel and a force of variable direction

acting at b : which differs entirely from our supposed relief of the pressure

of W. But it can be done easily by inseparably attaching a toothed-wheel

// to the barrel, and mounting a toothed-wheel k with its centre of motion

on the clock-plate, so that the center of k shall be in the same horizontal

line with a, and that the teeth of k may work in those of h: the

winding-up-key being applied to the axis of k. For then the act of turning

It produces no effect on the barrel except a pressure upwards at the very

point where the weight of W produces a pressure downwards (any in-

cidental pressure in the direction of a radius of the barrel, arising from the

slope of the surface of the teeth, evidently having no effect on the angular

motion about a). And therefore, as that pressure upwards must necessarily

be equal in magnitude to the pressure produced by W, it follows that we

may consider the pressure of Was simply relieved in this way of winding

up the clock. The wheel k, it is to be observed, may be of any size or any
number of teeth whatever.

The going-fusee is now complete in its action, so far as regards the use

of a determinate weight W. But by a trifling alteration it will be made

perfect for any weight whatever, without requiring any other change when

the weight Wis changed.

Suppose the lever-frame to be so loaded at cl that the lever-frame when

carrying the barrel and toothed-wheel may be nearly in equilibrium about

a. Then the weight w must be in a constant proportion to W. Now it

will be possible always to arrange the suspension of a single weight by a

line with pulleys attached to the barrel and to cl, so that the tension of the

line acting on cl shall be to the tension of that acting upon the barrel in the

constant proportion which may be assumed.

Consequently the action of that single weight, whatever be its amount,

will then produce two forces such as are proper for the action of this going-
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fusee : and therefore upon any change in that weight there will still be two

forces such as are proper for that action ;
and an alteration in the suspended

weight therefore will not require any other alteration in the adjustments of

the mechanism.

If it be required, for instance, that the forces corresponding to Wand
w shall be equal, we must adopt the construction represented in figure 4,

which, for its simplicity, may be considered preferable to any other. If

it be required that the force corresponding to w shall be double that

corresponding to W, we must adopt the construction of figure 5. This

is the construction adopted by the mechanic who (under my general

direction) constructed the clock-work of the Northumberland Telescope.
The wheels h and k are, for clearness, omitted in figures 4 and 5.

The length and inclination of the arm ad will depend upon the hori-

zontal distance between the verticals through a and d : and this horizontal

distance will be found by such a calculation as the following. Suppose, (for

instance) the diameter of the barrel to be half that of the toothed-wheel.

W
The force W acting on the barrel will produce a force — at c, and the

3W
pressure at b will therefore be ——

. This pressure acting on the arm ba

of the lever whose fulcrum is a, is to be balanced by the pressure w acting

3 W W 3
at d: or ——- x ba = w x al. Consequently al = — x -ba. Thus in the

2 * * w 2

W 3
instance of fig. 4, where — — 1, al must = -ba; in the instance of fig. 5,

W 1 3
where — = -, al must = -ba. In determining the inclination to be

w 2 4 °

adopted for the arm ad the mechanic must be guided only by the following

considerations : that if ad be nearly horizontal, the failing of power in the

action of the going-fusee (similar to the weakening of a spring by expan-

sion) will be small, but the angle through which the lever-frame must turn,

in order to correct any small error of adjustment, will be large : whereas,

if ad be greatly inclined to the horizon, the action of the going-fusee fails

rapidly during the suspension of the action of W, but a small error of
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adjustment is corrected by a small motion of the lever-frame. I should

think that an inclination of 40 3 to the horizon would be found convenient.

For fully understanding the action of the mechanism, the following

remarks may be useful.

If the wheel k, fig. 3, be forced a little in the direction opposite to that

of winding up, the clock will go for some time without any descent of W.

For, (using a to denote the point of the barrel where the teeth of k act on

those of h), abc may then be considered as a lever whose fulcrum is c: the

force acting downwards on a, will depress b, and will make several teeth of

the internal ratchet glide underf, and will, at the same time, carry d further

in the horizontal direction ; then if the force on k ceases, the force w, acting

now with increased statical momentum, will thrust f against the teeth of

the ratchet, and will maintain the pressure and motion at c, by the motion

of the whole lever-frame and toothed wheel round a. In this respect, the

action of this mechanism is similar to that of Harrison's going-fusee.

If the distance ba (using a to denote the fulcrum of the lever-frame) be

greater than the radius of the barrel, the force which acts on c during the

winding up, is greater than that which acts during the ordinary going of

the clock. If b a be less than the radius of the barrel, the force which acts

during the winding up is less.

It has been supposed in the whole of this explanation, that b and c are in

the same horizontal line, and that the pressure which the teeth of the wheel

exert on these of the pinion is to be upwards. If the pressure is to be

downwards, the only difference in the form of the construction will be, that

the lever-pivot a will be between the wheel-center and the pinion-center,

and that the inclined arm ad of the lever-frame will be turned towards the

pinion ; its length, &c. will be determined by the same considerations as in

the case which has been fully treated. If b and c are not in the same

horizontal line, all that is necessary is, to make the barrel-line pass over a

pulley, so that the direction of its action shall be perpendicular to the line

be : no alteration whatever is needed for the arm ad, or the line which acts

on it. An instance of such a case is represented in figure 6.
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In all cases, the center of the pinion, the center of the toothed-wheel,

the pivot of the lever-frame, and the center of the winding-up-wheel,
must be in the same straight line: and the pivot of the lever-frame,

the place at which the cord is a tangent to the barrel, and the place at

which the teeth of the winding-up-wheel act on those of the barrel-wheel,

must (as projected on the clock-plate) coincide.

I shall terminate this paper by referring to the two isometrical draw-

ings of the new going-fusee, in figures 7 and 8. The first, fig. 7, re-

presents the lever-frame with the barrel, toothed-wheel, internal ratchet,

and clicks, as viewed from the side on which the clock is wound up. The

clock-plate is supposed to be taken off: and, as the winding-up-wheel k

is carried by the clock-plate, the support of that wheel is not represented.

The second, fig. 8, represents the whole of the mechanism, as viewed

from the side opposite to that on which the clock is wound up : the clock-

plate opposite to the winding-up-side being taken off.

G. B. AIRY.

Royal Observatory, Greenwich,

Feb. 5, 1 840.

Vol. VII. Pari II. F F





T"i n.<>>.(tons of the I'ninh /'//// .^or/eJA Vol 1/7 /'/ J

rig. :y Fig. 4. /'/,/ />

«T *

/•<>. 8.

Mrfr<Ufc t Pernor, Uthff
"

CtLtniriUy*





TRANSACTIONS

CAMBRIDGE

PHILOSOPHICAL SOCIETY.

Volume VII. Part III.

CAMBRIDGE:
PRINTED AT THE PITT PRESS;

AND SOLD BY

JOHN WILLIAM PARKER, WEST STRAND, LONDON;
J. & J. J. DEIGHTON; AND T. STEVENSON, CAMBRIDGE.

M.DCCC.XLH.





XV. On Spurious Rainbows. By W. H. Miller, M.A. F.R.S. Professor

of Mineralogy in the University of Cambridge.

[Read March 22, 1841.]

The sixth volume of the Transactions of the Cambridge Philo-

sophical Society contains a Memoir by the Astronomer Royal, on the

Intensity of Light in the neighbourhood of a Caustic, in which the

relative distances of the brightest parts of the first spurious bow, and of

the first and second dark rings, from the geometrical place of the bow,

are determined by calculations founded on the undulatory theory. The

numbers to which he finds these distances proportional are,

Brightest part of bow 1.08

Dark ring between the bow and the first spurious bow 2.48

Brightest part of the first spurious bow 3.47

Dark ring between the first and second spurious bows 4.4 (probably).

It appears also, that the illumination extends beyond the place of

the geometrical bow, the intensity of the light there being about 0.442

of the intensity at the point of maximum brightness.

In order to compare these results with observation, I employed the

method of exhibiting rainbows and the accompanying spurious bows,

invented by M. Babinet (Poggendorff's Annalen, B. xli. S. 139). When
a beam of light admitted horizontally through a narrow vertical slit falls

upon a vertical cylindrical stream of water, portions of the primary and

Vol. VII. Paet III. Gg
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secondary rainbows and of a large number of the spurious bows may
be seen either with the naked eye or through a telescope, forming a

series of vertical coloured bands, arranged in a horizontal line to the

right and left of the point opposite to that from which the light is

transmitted. A graduated circle placed horizontally with its center in

the axis of the cylindrical stream, carrying a small telescope parallel

to its plane, and having its object-end about one inch distant from the

axis of the circle, served to measure the angle between the line of light

and any one of the luminous bars.

The diameter of the stream was determined in the following manner.

A lens of about 0.77 inch focal length was placed between the object-

glass of the telescope and the stream, at the distance of its focal length

from the axis of the latter, and the angle which the diameter of the

stream subtended when seen through the lens, measured. Next, a scale

of millimetres divided on glass, being placed in the focus of the lens,

the angle subtended by two lines distant one millimetre from each other

was measured. From these two angles the diameter of the stream may
be readily calculated.

In the first observations the diameter of the stream was about 0.022

inch, and the light used was that of the Sun. The mixture of different

colours rendered it very difficult to fix upon the brightest parts of the

bars, especially of those corresponding to the principal bows.

The mean of eight observations of the primary and two of the

secondary gave,

Radius of the brightest part of the primary bow 41.32

Radius of the brightest part of its first spurious bow 40.27

Radius of the brightest part of the secondary bow 51.58

Radius of the brightest part of its first spurious bow 53.57

If 3 (sin 0)
2 = (2 + n) (2

-
m), m sin 0'

= sin 0, the radius of the geo-

metrical primary bow of the colour corresponding to the index m will be

40'— 20 ;
and if 8(sin-v|,)

2 =
(3 + /*) (3

—
m), m sin ^' = sin

\//,
the radius

of the geometrical secondary bow of the colour corresponding to the

index n will be tt + 2\//
—

6>//.
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According to Fraunhofer (Denkschriften der K. Akademie der

Wissenschaften zu Miinchen fur die Jahre 1814 und 1815. S. 214, 224.)

the brightest part of the solar spectrum lies between the lines D, E, at

a distance of between one-third and one-fourth of DE from D; and the

indices of refraction of water for the lines D, E, are 1.33358 and 1.33585

respectively. Therefore, for the brightest part of the solar spectrum the

index of refraction of water will be 1.33424. Hence the radii of the

geometrical primary and secondary bows will be 41°.53',9 and 51°.12',9

respectively.

The theoretical distances of the brightest part of a bow and its first

spurious bow from the geometrical bow are as the numbers 1.08 and

3.47. In the primary bow the difference between the radius of the first

spurious bow and the radius of the geometrical bow is 1°.27'. Therefore,

according to theory, the distance of the primary from the geometrical
bow is 27', or the theoretical radius of the brightest part of the primary
is 41°.27'. The observed radius is 41°. 32'. Hence the observed place of

the primary is 5' nearer to the geometrical bow than its place as assigned

by theory. In like manner the theoretical radius of the brightest part

of the secondary bow is found to be 52°.6'. Hence the observed place

of the secondary is 8' nearer to the geometrical bow than its theoretical

place.

In a second series of observations, the eyehole of the telescope was

covered with a red glass which transmitted light from the least refran-

gible end of the spectrum nearly up to the line D. The points selected

for observation were the dark bands and the brightest part of the prin-

cipal bow. The dark bars could be seen very distinctly, and were easily

bisected. Considerable difficulty was, however, still felt in fixing upon
the brightest part of a principal bow, on account of its breadth and the

want of a symmetrical distribution of light on both sides of the brightest

point. An inspection of the results will shew that the latter was sub-

ject to considerable uncertainty. All the observations were liable to be

affected by a sudden shifting of the bars, which was seen occasionally

to take place through a small space to the right or left. The angular

GC2
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distances of as many of the dark bars as could be conveniently observed,

are given in order to meet any future calculation of their places. The

observations of the points at which the bows appeared to commence,

present, as might be expected, great discrepancies ; they shew, however,

that in every case the illumination extends considerably beyond the place

of the geometrical bow. The spectrum seen through the red glass fades

much more abruptly from its brightest point towards the more refrangible

end than towards the less refrangible end. JV being the more refrangible

end, M the brightest point, L that at which it begins to fade, K the

least refrangible end ;
the indices of those points deduced from the

double deviations through a hollow prism having an angle of 66°.22' are,

at K 1.3294, at L 1.3310, at M 1.3322, at N 1.3334. The best single

equivalent index will probably be about 1.3318.

(A)

Primary bow, seen through red glass, for which it has been assumed

that n = 1.3318, and .-. 4$' — 2
cf>
= 42°.15'. Diameter of the cylinder of

water = 0.0206 inch.

Dark band
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(B)

Secondary bow, seen through red glass, for which it has been assumed

that « = 1.3318, and .-. tt + 2 ^ - 6 v//
= 50°.34'. Diameter of the cylinder

of water = 0.0206 inch.

Brightest ..

Dark band
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(C)

Primary bow. m = 1.3346, .-. 4 0'
- 2 = 41.°50',4. Diameter of the

cylinder of water = 0.02105 inch.

Dark band
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(D)

Secondary bow. n = 1,33464, /. ir + 2 ^
of the cylinder of water = 0.02105 inch.

6^' = 51°.19'. Diameter

Limit

Brightest
Dark band 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

50°
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A fourth series of observations was made with a smaller cylinder of

water, the diameter of which is rather uncertain, the tube having been

accidentally broken before the observations for determining the diameter

of the stream were repeated. At the commencement of the observa-

tions it was found that m = 1.33453 ;
at the conclusion it was found

that p = 1.3348. This shews that either the prism or the stream had

been displaced in the interval. The comparison of the observed and

theoretical radii has been made with both values of lx. The former of

these agrees best with the theory.

(E)

Primary bow. If M = 1.33453, 4
<£'
- 2

(p
= 41°.52'. If M = 1.3348.

4 0'
— 2 <p

= 41°.49'. Diameter of the cylinder of water = 0.0135 inch.

Limit

Brightest
Dark band 1

2

3

4

5

6

7

8

9

10

11

12

13

14.

15

16

17

18

19

20

21

22

42°

41

40

39

38 ,

37

37

36

35

35

34

34

33

33

32

32

31

31

31

30

30

29

29

29

68'

18

34

28

38

52

12

34

56

23

51

20

49

21

53

26

58

34

9

44

20

56

30

67
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(F)

Secondary bow. If m = 1.33453, r + S>-6f- 51°.17',5. If

v = 1.3348. tt+2>//-6^' = 51°.23',3. Diameter of the cylinder of water

= 0.0135 inch.
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Obs. Theory.

(40'- 20 42 . 15)

rad. primary 41 . 51,4 41 . 45,4

rad. 1st dark ring 41 . 7

rad. 2nd dark ring 40 .16 40 . 14,4

(7T + 2\^
-

6\f,'
50 . 34)

rad. secondary ... 51 . 25 51 . 27,5
(Z>)

rad. 1st dark ring 52 . 37

rad. 2nd dark ring 54 . 7 54 . 12

(40'-20 41 . 50,4)

rad. primary 41 . 27,7 41 . 24,7

rad. 1st dark ring 40 . 51,4

rad. 2nd dark ring 40 .4,4 40 . 5,7

(tt + 2\|/
-

6\|/' 51 . 19,2)

rad. secondary ... 51 . 57 52 . 5,3

rad. 1st dark ring 53 . 5

rad. 2nd dark ring 54 . 27,6 54 . 27

(40'-20 41.52? 41.49?)

rad. primary 41 .20 41 . 18 41 . 15

rad. 1st dark ring 40 . S3

rad. 2nd dark ring 39 . 29 39 . 32 39 . 31

(tt + 2\//
-
6^' ... 51 . 17,5? 51 . 23,3?)

rad. secondary ... 52 .16 52 . 18,5 52 . 21

rad. 1st dark ring 53 . 37,4

rad. 2nd dark ring 55 . 31,3 55 . 26 55 . 21

W. H. MILLER.

St. John's College,
Bee. 14, 1840.



XVI. On the Foundation ofAlgebra, No. II. By Augustus De Morgan,
F.R.A.S., F.C.P.S.; of Trinity College; Professor of Mathematics

in University College, London.

[Read November 29, 1841.]

In presenting to the Society a continuation of the Paper on the

Foundation of Algebra, printed in Vol. vn, p. 173, I wish to make
the principal point of the new communication, which is the filling up
of an unfinished difficulty of the old one, subservient to such a view

of the transition from semi-logical to logical algebra as may perhaps

be useful to any one who may hereafter have to deal with an unexplained
result. By the semi-logical algebra I mean the ordinary science, in

which the explanations are insufficient to include J- 1
; and in which

therefore the results, though always intelligible when J- 1 disappears,

can only be considered as demonstrated upon the assumption that the

symbolical laws of algebra must in some, though an unknown, manner,

admit of a wider explanation.

The first step to logical algebra is the separation of the rules of the

ordinary science from its principles, or rather of its laws of operation

from the explanation of the symbols operated upon or with. As far

as I can see (and I believe no writer has professed to throw together

in one place every thing that is essential to algebraical process) the laws

of operation are as follow :

1. The literal symbols, a, b, c, &c. have no necessary relation except

this, that whatever any one of them may mean in any one part of a

process, it means the same in every other part of the same process.

HH2
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2. The sign = is the only one of which the explanation is requisite

in the art of operation : it signifies an assertion of identity of operative

effect, and gives the right to substitute one side for the other, when

desired. Its use implies a postulate, the only one demanded : that a = b

gives A = B whenever A is derived from a by the same operations in

the same order, which produce B from b.

3. The signs + and — are opposite in effect ; what one does the

other undoes : and is the symbol of a pair of such opposite operations

having been performed. Thus + a - a = 0. And such operations are

convertible in their order: thus + a — b + c= + c — b + a= —b + c + a, &c.

4. The signs x and +- (or any substitutes for them) are opposite

in effect: and 1 is the symbol of a pair of such opposite operations

having been performed. Thus x a -*- « — 1. And these operations

are also convertible in their order : thus

x a -r- b x c — xc-rixfl= -+ A x c x «, &c.

5. The operations x and -J- are of a distributive character, when

performed upon the results of the operations + and —
. Thus

( + a) x
( + i— e)

"m ( + a) x ( + b) + ( + a) x (
-

c), &c.

6. Like signs ( + and —
) produce + in all cases, and unlike signs

—
. And like signs (x and *•) produce x in all cases, and unlike signs

* . And each pair of signs is, relatively to its own set, distributive.

7. The signs and 1 may themselves be considered as subjects of

operation, and 1 + 1 is abbreviated into 2, 1 + 1 + 1 into 3, 1 + 1 + 1 + 1

into 4, and so on.

8. The laws by which the symbol ab
is used are ab x ac = ah+c and

(a
b

)

c = ahc
.

I believe the preceding rules to be neither insufficient nor redundant,

though I should be noways surprised to see them proved both the one

and the other; least of all if it were the latter.

The most remarkable point in this separation is that the laws of

operation prescribe much less of connexion between the successive symbols

a + b, ab, and ah
, than a person who has deduced these laws from an
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arithmetical explanation would at first think sufficient. The only con-

nexion between the two fundamental operations of + and x is contained

in a(b±c) = ab±ac, and though from this it is a demonstrable identity

that
abbreviated.

a +- a + a + "(1 + 1+1+ •••) x «,

which establishes a connexion between + and x when one of the factors

is derived solely from 1, yet it leaves the general symbol ab, when neither

a nor b is so derived, apparently more free of the meaning of a + b than

any one would predict it ultimately must be: while ah
is still less

connected with its predecessor ab. I shall now examine the manner

in which this independence of the three operations has acted in the

explanations which have appeared.

Choosing a unit-line of arbitrary length and direction, and signifying

by A or {a, a), a line of a units in length inclined to the unit-line at

an angle a, it is well known that an explanation can be given, under

which the preceding laws of operation become real consequences of real

conceptions. And it is worth stopping to note that the art of operation,

previously to the explanation of its symbols, is precisely what Dugald
Stewart imagined every mathematical science to be, namely, a pure

consequence of definitions, which upon other definitions might have

been another thing. This opinion was not, and perhaps is not, without

its followers : but I think it will hardly, in any mind, stand the test

of a comparison of any one mathematical science with the purely technical

algebra, which is rigorously founded upon definitions. By itself, this

method of operation, this algebra of rules without meaning, is no more

of a science than the use of the well-known toy called the Chinese

puzzle, in which a prescribed number of forms are given, and a large

number of different arrangements, of which the outlines only are drawn,

are to be produced. Perhaps a dissected map or picture would be a

still better illustration : a person who puts one of these together by
the backs of the pieces, and therefore is guided only by their forms,

and not by their meanings, may be compared to one who makes the

transformations of algebra by the defined laws of operation only : while

one who looks at the fronts, and converts his general knowledge of
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the countries painted on them into one of a more particular kind by
help of the forms of the pieces, more resembles the investigator and the

mathematician.

Mr. Warren, in his explanation* and Dr. Peacock, in his interpre-

tation*, of the algebraical symbols, have both obtained the symbols
a + b and ab independently of each other as to their meaning : while

both, to obtain the meaning of the symbol ab

, have had recourse to the

fundamental derivation from a, aa, aaa, &c. The consequence is, that

while both establish most completely the ordinary forms of algebra,
neither is prepared to consider ah where b is other than what answers

to the positive or negative number or fraction of the semi-logical algebra.

Mr. Warren, who carefully avoids all interpreted results, and whose work
is as complete a succession of consequences from explanations adequate
to the results as that of any professedly arithmetical algebraist, has there-

fore totally avoided the use of such a symbol as e
eV_1

, using instead

/ \—
(
1
)
2,r

> a new convention, derived from the roots of unity. Dr. Pea-

cock, making use virtually of the equation

cos + J- 1 sin 9 = (cos 1 + J- J sin l)
fl

,

and denoting cos 1 + J — l sin 1 by e, is able fully to interpret all results

arising from e
e = cos 9 + J— 1 sin 9, and to prove this equation as a

consequence of the laws of operation. Both writers would consider

e^V-i = cos 6 + J — I sin 9, as an equation resembling
— (— A) = A in

ordinary algebra, of which the first side, known to be the same symbol
as the second, can only receive its explanation from the second. And
we see that the complete independence of the explanations or interpre-

tations of a + b and ab leads (in the works alluded to) to a full and

satisfactory account of their properties, while the derivation of ab from

ab ends in a partial and insufficient notion of the meaning of the symbol
itself. There is something disappointing in the first-mentioned circum-

stance, since the mind naturally looks, in the most extensive view of the

subject, for the prototypes of those analogies and modes of derivation

which were of such essential use in the more bounded science : but at the

*
I use these words in the same sense as in my last Paper.
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same time the power of adhering to the modes of derivation of the partial

view is too dearly paid for by a want of generality in the general one.

In my last Paper I pointed out that the analogy of the definitions

of a + b and ab in arithmetic and algebra was perfect, insomuch that,

by an abstraction of the subject-matter of the former from those de-

finitions, the remaining words make definitions which will equally apply

to both views of the science. In fact, a + b is in both, a direction to

do with a what must be done with to make b ; while a b is a direction

to do with a what must be done* with 1 to make b. I now proceed

to disengage ah from its partial dependence on ab, and having established

an independent definition, to examine the analogies which exist between

«* in the ancient and modern view of the subject.

Let R =
{r, p), be a line of r units inclined to the unit-line at the

angle p ; and this being r cos p + r sin p J—l, let r cos p =Rx , r sin p —Ry
.

It is in our power to suppose this line given by means of another,

R' = (r',p), by the conditions R
x

' =
<p(r,p), Rv

' = ^(r,p), (p
and ^ being

known functions, from which r and p can be determined in terms of

r' and p. The second line may be called the determinant of the first,

and the first line may be said to be determined from the second. Now

supposing only the operation + to have been defined in its most general

sense, we have from every form of
<p

and
>//

the means of instituting

a new process, as follows. Instead of adding two lines, add their de-

terminants, and let the sum of the determinants be the determinant of

a new line. If (r, p), (s, <r), be the given lines, and (t, t) the determined

line, we have then

(t, t)
=

<p (r, p) + <p {s, a), x// (t, t)
= ^ (r, p) +

y}s (s, cr).

* The most analogical view of a b
is not a natural one, owing to the idea of a logarithm

being made subsequent to that of an exponent. But if the notion of a logarithm were ob-

tained, prior to the definitions of algebra, from two continuous linear motions, which severally

give equal increments in equal times, the one in difference and the other in ratio, the

exponent obtained from them would first enter as a logarithm, and would always retain

the character of a logarithm rendered into numbers, just as sin
-1 A always retains that of

an angle rendered into numbers. Hence, a'°gt or o 1"8
", which are the same things, would

be defined from e, introduced in the first process, as follows : al0£ b
is what arises from doing

to a that which must be done with e to form b.
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If we look for that system in which the newly determined line is

the product, RS, or *
(r, p) x («, a) or (rs, p + a), we find that we must

have
cp (r, p)

= log r, \J/ (r, p)
=

p. The system of logarithms is meant

to be the purely arithmetical one, and for reasons of numerical con-

venience, the base e is taken, and the angle is measured by the ratio

of the arc to the radius. This species of determinant is what should

be called the logarithm of (r, p) ; but, considering it desirable to retain

the word logarithm for purposes purely numerical, I should prefer to

call
(\/(logr)

2 + p
2

, tan
- '

p^
—

J

the logometer of (r, p). All this would

throw no light upon the general meaning of the sign x , but it leads

immediately to that comprehensive definition of Rs
or (r, p)

(* "\ which

Mr. Warren might have adopted, to the introduction of e
9 ^-1

, without

creating the smallest flaw in his well-secured title to be considered

as having most strictly adhered to explained definitions only : and which

Dr. Peacock might have regarded as the complete interpretation of every

symbolical result in which an exponent occurs that cannot be laid down
on one side or the other of the unit-line. That definition is as follows :

Rs means the line of which the logometer is obtained by multiplying

together S and the logometer of R. Thus, OU being the unit-line,

let it be required to lay down OR0S
. Let OL be the logarithm of

OR, and ML the arc of z ROU (rad. OU): then OM is the logometer
of OR. Take OT a fourth proportional to OU, OM, OS, and z TOU
= l SOU + iMOU; then TO is the logometer of the result required.

Place a line of which the logarithm is TV
at an angle whose arc is OV, and that line,

OW, is the one represented by ORos
. The

fundamental laws of operation are so readily

established that I do not feel it necessary

to enter upon them ;
and the equation

e9V-! = cos 6 + J — 1 sin 6 is a mere corollary of the definition; for the

logometer of e, or (e, 0) is (1, 0), and (l,0)x^-l or (1, 0) x
(fl.^)

* It is to be understood that all operations upon the small letters are those of common

arithmetic.
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is (o,
—

1
, which is the logometer of a line whose length has 0cos-,

or 0, for its logarithm, inclined at the angle 0sin^, or 9. Hence «
B ^~'

is a unit of length, inclined at an angle ; or cos 9 + J - 1 sin 0.

It will appear rather against the preceding definition, that it points
out e

6^-1 to signify the same as cos + J— 1 sin 0, whatever e and -w

may be : for there is nothing in the preceding demonstration which

has reference to any particular value of these constants. And, in reality,

as far as this one definition is concerned, and its consequences, there

would be no limitation upon the meanings of w and «?. But when—
having invented this indefinite mode of constructing (1, 6), which leads

us to our result whatever may be e or n, and in fact contains a direct

and inverse use of e which prevents the value of that letter from af-

fecting the result—we equate this mode of producing (1, 0) to a definite

mode derived from another definition, we must expect to see the in-

definite character of the former changed, by the introduction of new

conditions, into the definite character of the latter. But this would
be no answer to the difficulty : for it would be admitting a new
fundamental rule among the laws of operation. Let the reasonableness

of the expectation just alluded to be ground for an assumption, and

we see that •n- (two right angles) and e are connected by the equation
6V-i = cos 1 + J- 1 sin 1, or e depends upon the angle denoted by 1,

which is all that is necessary. But I say that this equation is a con-

sequence of the whole set of definitions only, without any new assump-
tion. In the first place, it is easily shewn that Rs = JR*IlxIl...($ times)

when S=(s, 0) and s is integer. Next, from the definition of multipli-

cation it immediately follows that

cos 80 + J — 1 sin s0 = (cos + J— 1 sin 0) (cos0+ J — I sin 0)...(s times);

whence cos s0 + J — 1 sin s0 = (cos + J — 1 sin 0)';

whence it is cos 1 + J — 1 sin 1, and that only, which, raised to the in-

teger power of s, gives cos s + J— 1 sin *
; for it may readily be shewn

that no other line (r, p) can have the same *
th

power as (1, 1). It is

then the result of the definitions of addition and multiplication that

nothing but cos 1 + J — 1 sin 1, raised to the power of * (integer), gives

Vol. VII. Pakt III. Ii



294 PROFESSOR DE MORGAN, ON THE

(1, *): it is the consequence of the definition of an exponential operation,

considered apart from the rest, that e^_1 raised to the power of s, gives

(1, *) : the whole system therefore requires that W-1 = cos ] + J — 1 . sin 1;

which is thus proved previous to the equation of e"^-1 , and cos 9 + J— l sin 9

from the definition of an exponent. Hence e depends only upon the an-

gular unit, which may be a degree, a minute, a right angle, or any

other, provided that e be taken accordingly. The proof that e = 1 + 1

-s- | + ... ,
when the angle 1 is that which has an arc equal to the

radius, must be a subsequent matter.

If \ (r, p) represent the logometer, or complete algebraical logarithm,

of (r, p), the equation (r, p)
—

e
x ( r, '' ) is an identical one; for the logometer

of e, or \(e, 0), being (1, 0), say that (t, r) is that of (r, p), whence, by

definition, Kl, 0) x
(t, r) or (/, t) is the logometer also of t^i

r>i>). Hence,

making 9 — r, we have e
T ^/"1 = -

1, and taking the obvious truth that

lines equal (both in length and direction) have the same logometers, we

have

M-i)

a proposition which, not many years since, was one of the mysteries

of analysis. It is now a very simple geometrical proposition : the first

side means a line of -k units laid down positively on the unit-line ; the

second side means the logometer of a negative unit turned back through
a right angle. Now the logometer of a negative unit is a line of it units

erected positively perpendicular to the unit-line: whence the identity

of the two sides is manifest.

On the analogy of the complete definition of 72
s with that of ah

in arithmetic, it can only be said that, so far as the latter is intelligible,

it is seen to coincide with the former : while the former itself intro-

duces an element which seems, up to this time, to defy analogy drawn

from arithmetic
; namely, the representation of a projection on the unit-

line by a logarithm, and of one on the perpendicular to it by an angle.

We see how this happens in the deduction of &J-\ = cos 9 + J— 1 sin 9,

and we also see that the general definition of an exponent may be derived

from the idea of exposition (to use an old phrase) of one symbol by an-

other, in such a manner as to reduce multiplication to the result of
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addition of exponents. The combination of a line, not an exponent,
with one which is an exponent, by the operation newly learnt, or which

might have been learnt, from combining two exponents by the known

operation + , is then obviously natural, and its result completes the

definitions of algebra in their most comprehensive form. But it is

satisfactory to find that the matter is not thus exhausted; and it re-

mains a subject of speculation how it arises that a line perpendicular
to the unit-line has the same relation to an angle which one on the

unit-line has to the logarithm of a length. The following considerations

tend, as far as they go, to give some idea of the origin of this circum-

stance.

Let us go on to the generation of quantities by infinite numbers

of infinitely small elements, premising that nothing will be said which

may not easily be altered into the language of limits by those who

object to the infinitesimal phraseology. Every line (r, p) can only be

formed by addition of equal* elements in one way, namely, that ex-

pressed by f^ {dr, p), p being constant. Let us now consider what takes

place when (r, p) becomes {r + dr, p + dp). This is obviously equivalent

to multiplying the first line by (1 + — , dp), or successively by (1-1
—

-, 0)

and (1, dp). The first multiplication alters length only, in the proportion
of r + dr to r\ and answers to multiplying by OK, UK being dr : r.

Now, OU being the unit-line, make UW = dp in

linear units; whence, by the conventions of angular

measurement, OW is (], dp), neglecting the diffe-

rential of the second order by which OW differs from

OU. These ratiunculce (such was the term applied
*

v v

to differentials so employed when the theory of loga-
'

rithms was first explained), UV and UW, being each used in the

multipliers n times in succession, we have resolved the contemporaneous
transitions (linear and angular) into distinct and (if we please) successive

transitions. If we begin with OU, or (1, 0), and proceed through n

multiplications, and make dr : r always the same, and =
/n, we have

* Remember that 'equal' means 'same in length and direction.'

112
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( {
1 +

,.}", ndp) = (1 +m)" • (1 + dp J- 1)" (A).

Now let n be infinite, and let (1 + n)"
= r, ndp = p, from which we find

= f, (l + dpj-l)" = e<>^,
M ftp

all following from the assigned laws of operation. Hence re p ^~ x
is the

representative of a line r inclined at an angle p ; while log r and p, each

in its own way, and to a different radix, may be considered as a register

of the number of transitions by which we pass from (1,0) to (r, p).

The term logarithm itself, as is well known, is a consequence of a similar

notion of comparison of numbers by the registration of the 'numbers

of the ratios' by which we pass from unity to those numbers. The ratiun-

cula? u and dp must be in the proportion of log r and p, and the line

formed by adding WU and UV, or n + dpj—l, is one which gives these

two ratiuncula? for its two projections. This line repeated n times gives

log r + 9J—1, the logometer of (r, 9) as I have called it. Should any

objection be taken to that term, perhaps the words compound logarithm

might be preferable. Observe, that this derivation of the logometer is

independent of the second side of {A), and might be introduced pre-

viously to the expression of (r, 9) in the form re'v'-1
.

I have throughout avoided considering the ambiguous values of sym-
bols, a thing for which there is no necessity, as has been frequently

shewn, and as I noted in my last Paper. The more I think on this

subject, the better satisfied do I feel, that the new algebra should have

no symbols of double or multiple value whatsoever; that is, that the

meaning of each elementary symbol should not be considered as com-

plete, unless it expresses the amount of revolution from the unit line

by which it is to be made to attain its direction, as well as that direction

itself. Undoubtedly, after a time, the student should be shewn how to

drop this part of the definition ; but this he will better be able to do

than to take it up after a previous training, which has never intro-

duced it. This is an important point to those who believe as I do, that

it will not be long before the new algebra is introduced into elementary
instruction ; and it is the more important, because there are some new

species of ambiguities altogether peculiar to the most general view, and

which must remain such until further inquiry points out the mode of
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dealing with them. These last can hardly receive due attention, unless

they are carefully distinguished from the previous and well-known cases

of the same kind ; which will be only done by adopting that system

of definitions which destroys the latter altogether.

ADDITION.

A theorem of M. Cauchy, which is well known to the readers of

Liouville's Journal, by the comparatively easy demonstration which

MM. Sturm and Liouville have there given of it, may be set in so

clear a point of view by the complete algebra, that I here add a de-

monstration of it. This theorem belongs essentially to the complete

system of algebra, as will be evident from its enunciation.

As before, Z = {%, £) or ««W-1
, means that Z is a line of the length

» inclined at an angle £ to the unit-line.

Theorem. Let <pZ be any function of Z, and let Z = x + y J- 1

give <pZ = p +q J—\. Also, within the whole of

the figure ABCD, its contour included, let <pZ, (p'Z,

&c. never become infinite, x and y being the co-ordi-

nates of any point within it. Let any point be called

a radical point which makes cf>Z or <f>(x + y J — 1) = 0.

In carrying a point in the positive direction of revo-

lution round the contour ABCD, let the fraction
"

change sign by

/tossing through zero k times from + to -
, and / times from — to + :

but let it never change sign by passing through -, that is, let there

be no radical point on the contour itself, and neglect altogether the

cases in which it changes sign by passing through oo . Then the number

of radical points contained within the contour is ^ (k
—

I).
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Encircle any point P by an infinitely small contour, on which let

a point be carried round P. Four cases arise ; neither p nor q vanishes

within or on this contour ; p vanishes but not q ; q vanishes but not

p : or both vanish.

If neither p nor q vanish, there is never change of sign in either

(for by hypothesis they do not become infinite), and the theorem is

true for this infinitely small contour : for k and / are both = 0, and

there is no radical point.

If p alone vanish, the curve p =
(p being a function of x and y,)

passes through the small contour at a single or multiple point : and —

may change sign at those points of the contour through which the curve

passes ; but the fraction always becomes and never oo . There are then

as many changes of sign from + to — as from — to + , and the theorem

is true : for k = I, and there is no radical point.

If q alone vanish, the curve q = passes through the point : and

every thing is as in the last, except that -
always becomes oo when it

changes sign. Hence the theorem is true ; for k and / are each = 0, and

there is no radical point.

Lastly, let there be a radical point within, but not on, the contour :

which it is evident may be supposed to contain only one radical point.

Let x —
ft, y = v at the radical point, and let Z be the radius vector

drawn from the origin to a point in the contour, and R that drawn from

the radical point to the same point of the contour. If then

m + vj - 1 = A = {a, a);

we have, using the extended system of algebra,

Z = A + R, or (»,£)
=

(«, a) + (r, P), or ase^V-1 = aea ^~ l + ri»v^,

r being infinitely small. Now let <p(A + R), or <pZ, be capable of being

expanded into the series

B Rm + B,Rm+1 + B2Rm+*+

in which, on account of the value of R, we need only consider the first

term BaRm
.
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By our hypothesis m is an integer, and there are m radical points in

one, answering to m equal roots of <pZ=0. Also, B being (b , fi ),

we have

B Bm = b^r™ {cos (mp + /3 ) + sin (mP + /3 ) . J- 1
}

.

whence
* = cot (mp + /3 ).

Now while p goes through a whole revolution, mp + fi passes from

(i to 2mir + /3 through »« complete revolutions, and changes sign 2m
times from + to -

passing through each time : but it never changes
from — to + except by passing through oo . Hence k = 2m, 1=0,
l (k - I)

= m, which verifies the theorem, since there are m roots within

the contour.

Next, let the whole figure ABCD be divided into an infinite number

of infinitely small figures, with no other limitation than that no radical

point is to fall upon one of the lines of division: and let a point move

round each of the infinitely small figures in the positive direction of

revolution. It is clear that the expression ^ (2A -
2/) will not be altered

if we remove all the internal division lines and leave only the external

contour ABCD : for each internal line is described by two points moving
in opposite directions, and wherever one point adds a unit to 2&, the

other adds one to 2£ Hence the value of Ik - 2/ can be found by

finding that of k — I for the external contour only.

If we suppose cpZ to be rational and integral, say = A Zn + AiZ"- J + ...,

and if we make the contour in question a circle with the origin as a center,

and a radius so great that the highest term A Z" need be the only one

retained, we find that - = cot (»£ + a ), which gives, as before, in a

revolution, k = 2n, I - 0; whence the whole number of roots of (pZ=0
is neither more nor less than n.

It is easily deduced from the preceding that the number of real

roots of <px
=

lying between x = a (the less) and x = b the greater, is

the number of vanishing changes of sign from — to + which take place

while x passes from a to b in the quotient of

>*- 0".r£ 4 c^x-V--- ... divided by <j>'x.
-

<p'"x^- + $>x2 T 2.3.4 J -r
• T 2.3 r 2.3.4.5
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y being an infinitely small positive constant : provided that neither a nor b

is a root. This residt, however, would be of little general use: in fact,

this theorem of Cauchy requires an examination of the contour which

is equivalent in that which must be made of the axis to find the real

roots. It makes the examination of a line equivalent to that of the

whole included space ;
but does not profess to help in that examination.

But in the important case in which the contour is a rectangle with sides

parallel to the axes, or when it is desired to find all the roots of the form

x + y y/— 1 in which x lies between given limits, and y between other

given limits, this theorem is a complete reduction of the question to

that of finding the number of real roots of four equations which lie

between given limits, one pair for each equation. It thus supplies the

theoretical desideratum which Fourier and Sturm have left.

A. DE MORGAN.

University College, London,

October 12, 1841.



XVII. An Enquiry into the Causes which led to the Fatal Accident on

the Brighton Railway (Oct. 2, 1841), in which is developed A
Principle of Motion of the greatest importance in guarding agtiinst

the Disastrous Effects of Collision under whatever circumstances

it may occur. By the Rev. J. Power, M.A., Fellow and Tutor

of Trinity Hall, Cambridge.

[Read November 29, 1841.]

When accidents have occurred on railways, in the majority of instances

some cause has been immediately apparent, to which the occurrence might
be reasonably imputed ; but the fatal accident which took place on the

Brighton Railway, in October last, the cause of which still lies buried

in the greatest obscurity, forms a remarkable exception to the above rule.

In meditating on the possible causes of this accident, I have arrived

at some Dynamical Results, which will be given in the course of this

investigation, and which are, as I conceive, of the greatest importance
to the public safety, inasmuch as, by attention to them on the part of

Engineers, the disastrous consequences of collision may be very materially

diminished.

In order to pursue the proposed inquiry with effect, it was necessary in

the first place to ascertain, as accurately as circumstances would permit, the

true history of the accident. With this view, I have examined with great

care the report of the Coroner's Inquest as given in the Times news-

paper, and have succeeded, to my own satisfaction, in forming a tolerably

consistent narrative out of the disjointed materials of which the evidence

is composed.

It would be tedious to occupy the attention of the reader with the

critical details of the above examination, and I shall therefore proceed

Vol. VII. Paet III. Kk
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at once to lay before him the historical conclusions at which I have

arrived, so far as they are connected with the object I have in view.

I will take up the narrative at that point where the train, with

two engines in front, was making its way from the Horley Station in

the direction of Brighton, and was proceeding with apparent safety at

the rate of about 30 miles an hour. The leading, or Pilot engine as it is

termed, was a small four-wheeled engine which had been put on at the

Horley Station, in order to afford a temporary assistance to the large

six-wheeled engine which had brought the train from London. I shall

call these the first and second engine respectively, as they occurred

in the order of the train, though it may be worth mentioning, that,

in the evidence of Goldsmith, the driver of the pilot engine, these

terms are used in the inverted sense, the large original engine being

named the first, and the smaller engine, which was subsequently pre-

fixed, being named the second.

On approaching a certain cutting, called " the Copyhold Cutting,"

and at a distance from it of about half a mile, the driver of the second

or large engine turned off his steam, his motive for so doing being,

that he might reserve his steam for the latter part of the way to

Brighton, when he should be deprived of the assistance of the other

engine. By this operation the speed was reduced from 30 to about

20 or 25 miles an hour, and the train was continuing to proceed with-

out any inconvenience over the half mile which intervened between

the place where the steam of the second engine was turned off and

the entrance of the cutting.

Before entering the cutting, a labourer on the road was observed

to hold up his hand, the usual sign for slackening speed. Upon this,

the driver of the first engine turned off his steam " to within half an

inch," an interval which (as the regulator in closing the aperture,

through which the steam enters into the cylinder, moves over a quan-

drantal arc of seven inches radius ',) corresponds to a deficiency of about

^ from the whole extent of the range.

* See description of Stephenson's Locomotive Engine in the new edition of Tredgold on

the Steam Engine.
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Immediately after this, the driver of the first engine perceived a

different motion in his engine, which, to use his own expression,
" wavered backwards and forwards," and in a very short interval of

time, the fore wheels were thrown off the rail, causing the engine to

upset, and giving rise to the accident, with all its frightful concomitants.

The motion which preceded the upset of the engine, is described by
the driver of the second engine as a rocking motion, and by a labourer

who viewed it from the road, as a jumping up and down of the fore
wheels. The short period of time for which it lasted was estimated by
the driver of the second engine, and the person who viewed it from

the road, at half a minute ;
and though the driver of the first engine

stated that it
" lasted only an instant," some allowance must here be

made for the vagueness of language, and we shall probably be not far

from the truth, if we regard it as an interval of very small but sen-

sible duration. It appeared also, by the evidence of one of the engine

drivers, that at the time the accident happened,
" the pilot engine was

doing very little work, merely keeping tight the chain ;" from which

incidental expression it may be inferred with certainty, that the two

engines were connected by a chain, which was at liberty to be loose

or tight according to the distance between the two engines*, a fact,

be it observed, which is of the greatest importance in the explanation

which is about to be offered.

It further appeared in evidence, that the engine had been examined

and found to be in perfect order ; and though the driver of the second

engine gave it as his opinion, that the accident was occasioned by clay,

or some greasy substance, lying on the rail, yet it appears by the evidence

of the person whose duty it was to inspect this portion of road, that the

rail was perfectly clean and had nothing slippery upon it, that it was,

moreover, on a bed of sand, and not on clay. The preceding rains had

indeed rendered it a prudent precaution that the train should come steadily

over this portion of road, and such was alleged to be the meaning of the

signal which the man made by holding up his hand, a practice which

* I have lately seen a chain of this description connecting two engines drawing a heavy
train on the Birmingham railway, allowing a considerable variation of distance (to the ex-

tent perhaps of about a foot) between the engines.

KK2



304 Mr POWER, ON THE PREVENTION OF THE

had been adopted for some days previous. It appears also that the rate

at which the train was proceeding was nothing more than the usual

rate, which was well warranted by the sound state of the rail. Indeed,

no danger, or cause of danger, appears to have been suspected by any

person belonging to the establishment up to the moment the accident

commenced.

The first engine was, indeed, described as top-heavy, having been

recently filled with water, but this was nothing more than must usually

occur under similar circumstances, that is to say, when a pilot engine is

first attached.

We have, then, before us a train of carriages (including the large

six-wheeled engine, whose steam had previously been turned off), drawn

at a comparatively moderate rate by a four-wheeled engine in front,

and in the apparent absence of predisposing causes, we have to account

for the continued jumping motion, which was observed to take place

in the front engine upon the driver's turning off his steam.

Now it occurred to me, that the motion described was exactly such

as would have resulted from a series of jolts or moderate impulses com-

municated at the back of the engine, provided they were communicated

at a point considerably lower than its centre of gravity ; and I pro-

pose to show, in the first place, how an impulse from behind com-

municated lower than the centre of gravity would cause the front engine

to lift up its fore wheels ;
and secondly, to point out how, under the

circumstances of the case, a succession of such ascents of the fore wheels

might possibly have taken place. For, be it observed, the phenomenon to

be explained is not so much the final overthrow of the engine, as the pre-

ceding jumping motion, or series of jumps, which led to it; a single

jump might, no doubt, have been sufficient to cause the accident, but the

probability of danger arising from a single jump, would be incomparably

smaller than that which would arise from any cause which rendered

possible a continued series of them, such as was in fact observed to take

place on the present occasion.

I shall demonstrate hereafter the following important proposition,

namely, that there exists at the back of a locomotive carriage of any
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kind, a point, at which if a horizontal impulse be communicated, no

jumping motion of the kind we are considering can possibly result,

but if the impulse be communicated, at a point lower than this, the

carriage will lift up its fore wheels, and if higher than this, it will lift up
its hind wheels.

Professor Willis has been so kind as to fit up, at my request, a small

model, which affords a most satisfactory experimental proof of the truth

of this proposition*, which I previously arrived at by mathematical

considerations.

If we neglect the mass of the pair of wheels and axle about which

the rotation is supposed to take place, a simple mathematical calcu-

lation suffices to show, that the point of quiescence, or that at which

the horizontal impulse must be applied, in order that no rotatory motion

of the kind we are considering may be impressed, will be situated in the

same horizontal level with the centre of gravity of the carriage. But

since in locomotive engines the wheels and axles are of considerable mass,

(in Stephenson's locomotive the driving pair of wheels and the axle

connecting them weigh about a ton and a quarter,) it was desirable

to ascertain how far this circumstance would cause the point of quiescence
to deviate from the level of the centre of gravity.

The problem then becomes more complicated, but the result of the

investigation shows, that when the rail is regarded as perfectly smooth,

the deviation of the point of quiescence from the centre of gravity of

the whole carriage, including the wheels and axle, is nothing, whatever be

the mass of the latter. The roughness of the rail may however cause it to

deviate slightly below this level, but even in the case of perfect roughness,
the deviation is so slight that in practice it may be safely neglected.

The mathematical details connected with this part of the subject

will be given in the sequel ; and I now proceed to mention a second

principle, which is essential to the solution I am about to offer, and

which, in the absence of sufficient data, I assume rather as a very

probable hypothesis, than as a mathematically demonstrated theorem

like the former. The principle I assume is this, that if the two

* The experiment was exhibited at the time the communication was read.
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engines, both having their steam turned off, were started with the same

velocity, the lighter would be retarded more rapidly than the heavier.

If indeed we assume that the machinery is similar in both, the prin-

ciple will be readily allowed ; for the rapidity of the retardation will be

as the retarding causes directly, and as the mass of the engine inversely.

The principal retarding causes when the steam is turned off are,

1st, the resistance of the air ; 2dly, the friction of the parts of the

machinery sliding over one another, the principal of which is, probably,

the friction of the pistons within the cylinders ; 3dly, the roughness
of the rail, that is to say, such retarding causes as may act in the man-

ner of minute obstacles lying upon it ; 4thly, the friction on the axes.

Now, though the effect of the two last causes will be nearly as

the masses of the engines, the two former may be regarded as pretty

nearly the same, the machinery of the engines being supposed similar

in the two cases ; on the whole, therefore, the retarding causes in the

smaller engine will be diminished in a less ratio than its mass ; it will

consequently be retarded more rapidly than the other.

Let us now apply the principles which have been laid down to the

case before us.

It will be recollected that the engines were connected by a chain,

which admitted of being tight or loose as the distance between them
was greater or less: it will be recollected also, that the pilot engine
was described as "top-heavy", which makes it highly probable that

the frame, to which the chain is usually applied at the middle, and

the buffers, (or disks which are brought in contact when the engines

approach each other), at the two sides, was considerably lower than

the centre of gravity of the engine. Lastly, it will be recollected,

that the steam of the large engine had been previously turned off.

Let us now consider what will take place when the steam of the small

engine in front is turned off.

The small engine being retarded more rapidly than the large one

following it, the engines will be brought nearer and nearer to each

other, the connecting chain in the mean time becoming slacker and

slacker, and by the time the buffers are brought in contact, a finite
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difference of velocities will be generated: this will occasion the first jolt,

which being applied at the back of the pilot engine considerably lower

than its centre of gravity, will cause it to lift up its fore wheels. By
the elasticity of the buffers, (which, when attached to engines, are not

usually furnished with springs like those attached to the carriages), the

velocity of approach will be immediately converted into a velocity
of separation, according to the laws of elasticity and impact, and,

for the moment, the front engine will be again driven ahead of the

other; but by the continued excess of the retardation of the first

engine, the velocity of separation will at length be reconverted into a

velocity of approach, giving rise to a second jolt, and occasioning the

front engine a second time to lift up its fore wheels; and the same

process might be repeated a great number of times in succession.

In the above explanation, for the sake of simplicity, I have omitted

the consideration of the effect of the train following the second engine ;

but since the carriages are exempt from one great cause of retardation

to which the engines are subject, namely, the friction of internal

machinery, it is clear that they would, if left to themselves, be retarded

less rapidly than the engines, whence it is easy to see, that the effect

of the train of carriages, will tend to push on the second engine, and in-

crease the effect which has been described.

I have supposed, moreover, that the engine has time to resume its

natural position after each jolt before the succeeding jolt is commu-
nicated, but if the jolts succeed one another more rapidly than the

natural time of an ascent and descent of the front wheels, it is easy
to see how, under favourable circumstances, they might conjoin their

effects so as to increase the angle of elevation very considerably. The
most favourable case for producing this effect, would be, when the

second jolt is communicated at the precise moment when the front

wheels have attained their highest elevation due to the motion im-

pressed by the first, and so on for the third and following jolts.

These successive ascents of the fore wheels were exactly the phe-
nomena which it was our object to account for, being such as were

observed to precede the overthrow of the engine, and such as no doubt
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will be attended with the greatest danger whenever they occur. In-

deed it is manifest, that if during the ascent of the fore wheel, any
accidental cause should give the engine at the same time a hitch in

a horizontal direction, the fore wheels must be thrown off the rail,

as in fact took place in the present instance, occasioning the over-

throw of the engine and the disastrous consequences which ensued.

Whether the above be the true solution of the accident it is possible

that a variety of opinions may exist ; but I conceive, no one will doubt

the importance of the principles which have been developed in the

course of this investigation, and which give rise to the following practical

conclusions :—
1. In the construction both of the engines and carriages care should

be taken that the centre of gravity of each engine or carriage be about as

low as the horizontal frame to which the buffers and links are attached.

2. If conformity with the above rule be attended with practical

inconvenience, the same object might be attained by placing the buffers

at the proper height, by means of strong additional frame-work, connected

with and rising from the general horizontal frame.

I am not sure that a single pair of opposing buffers placed mid-way
between the rails, would not be better than two pairs of buffers placed
one immediately over each rail, in order to avoid any tendency to rotatory
motion in a horizontal plane, which any inequality of action in the latter

might occasion. But there may be practical objections to this arrange-
ment with which I am unacquainted.

3. A further means of diminishing the danger would be to shorten

as much as possible the connecting chains, in order to constrain the

engines and carriages to move with the same velocity, and to prevent
the accumulation of any finite difference of velocities between any two

engines or carriages throughout the train*.

*
I have lately observed on the Birmingham railway that the buffers of the contiguous

carriages are forced into immediate contact, and the connecting chains made as tight as pos-

sible by means of a screw-power. Why might not the same mode of connection be adopted
when a pilot engine is attached, instead of a loose chain, which appears to be the usual

practice? If injury to the machinery be feared, arising from the jarring vibrations which

would accompany this contact, these might be prevented by furnishing the buffers of the

engines with springs similar to those of the carriages.
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But if the direction of F passes lower than the centre of gravity, an an-

gular velocity about D must necessarily result, the magnitude of which

is proportionate to the distance h at which the impulse passes below G.

If the impulse passes above G, h changing its sign, a assumes a

negative value, which is impossible

so long as D is supposed to remain

in contact with the plane; we must

in this case regard E as the point

which remains in contact with the

plane, and calling R' the vertical

reaction at E,

a the distance EL,
a the angular velocity about E,

we have, as before,

Ma a' - R\
Mk*a' = Fh - R'a';

whence M (a'
2 + ¥) a' = Fh,

a
Mia'" + *»)'

which shows, as before, that if the direction of F passes through G,

no angular rotation will be communicated; and further, that if the

direction of F passes higher than G, an angular velocity, whose mag-
nitude is proportionate to the distance GH, will be generated, by
virtue of which D will be carried upwards, E remaining in contact

with the plane.

The preceding results may be regarded as near approximations to

the truth, in the case of a wheeled carriage, when the mass of the

wheels is inconsiderable compared with the mass of the carriage.

But as the wheels and connecting axles in locomotive engines are

very massive, it may be useful to inquire what influence the mass of

the wheels and axle, about which the rotatory motion takes place, may
have in modifying the preceding results.

The carriage with its wheels not constituting a single rigid body,
as in the last case, the problem becomes much more complicated, and

it is extremely difficult to avoid sources of error in applying to it the
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same formulae for the motion of rigid bodies, as were used in the

preceding example. On this account I prefer treating it by the method

of Lagrange.

Let us suppose the whole mass of the engine to be projected upon
a vertical plane parallel to the direction of the rails, and that a hori-

zontal impulse F from behind causes it to lift up its front wheels

and rotate about its hind or driving pair of wheels.

Let x, y be the horizontal and vertical co-ordinates of any point

m of the carriage, deprived of its hind pair of wheels and their con-

necting axle, referred to a fixed origin behind the carriage.

x\ y those of any point m of the hind wheels and axle ;

u, v the horizontal and vertical velocities communicated to m by
the impact;

u', v' the same for m'.

By D'Alembert's Principle, the momenta subject to the conditions

of equilibrium are

F, — mu, — &c. — m'u', — &c. horizontal;

and — mv, — &c. — m'v', — &c. vertical.

Hence, naming x the horizontal co-ordinate of the point of appli-

cation of F, we have by the principle of virtual velocities,

Fix - Z(muSx) - 2(m'u'§x') )

(1),

I'v'ly'))

'

Let V be the linear velocity communicated to the axis of the hind

wheels.

a the angular velocity communicated to the carriage about the axis

of the hind wheels, tending to diminish x and increase y.

a the angular velocity communicated to the hind wheels about their

axis, tending to increase x and diminish y.

Id, l& any small virtual angles of rotation of the carriage and hind

wheels in direction of the angular velocities a, a respectively.

8s the corresponding horizontal space described by the axle of the

hind wheels.

L L2
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Then if the rail be perfectly smooth the variations 89, 89
1

,
8 s are

independent of each other. But if the rail be perfectly rough, so

that the wheel remains in perfect rolling contact with it during the

shock, 89" and 8s are connected by the equation 8s = r89', r being

the radius of the wheel.

Again, assuming the moveable projection of the axis as a new

origin, let

f, tj be the co-ordinates of m ;

£', »/ be the co-ordinates of ml.

We have, manifestly,

U mm V —
r\a,

V =
£ct,

tf . V + n'a,

V' = -
fa'.

Also, 8x = 8s —
ij89,

h - m
M = 8s + v'89',

8y'
= - f 56T.

Again, if a, b be the horizontal and vertical co-ordinates of the

centre of gravity of the carriage exclusive of the hind wheels, and h

the vertical distance below this centre at which F passes, we have

8x = 8s - (b - h) 89.

Substituting these values, the equation (1) becomes

= F {8s
-

{b
-

h) 89]
- 2 {m {V -

n*) (^ -
r,89 )}

- 2 {m?a89}

- 2{m'(r+ r{d) {Is + r,'89')\

- 2 {m'?*a'89'\

Hence if the rail be perfectly smooth, equating to zero the co-

efficients of the arbitrary variations 8s, 89, 8&, we obtain

(2).
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= F - VZm + aZmr, - V2m' -
a'Lm'r,', ~\

= - F.(b- h) + r2ra»/-«2 \m(? + v°)},> (3).

m - VZm'r,' - u'Zm'W* + ?'•). )

If M= 2m = mass of the carriage without the hind wheels and axle ;

M' = 2»?' = mass of the hind wheels and axle;

k the radius of gyration of M about its own centre of gravity ;

&' that of M' about its axle.

Since 2m r\
= Mb,

•2m'ri= 0,

S»(f + >/

2

)
- Mia1 + ¥ + k*)t

2z»'(p + v*) = M'k'*,

the equations (3) above reduce themselves to

= F - {M + M') V + Mba,

= - F(b -h) + MbV- M{a% + ¥ + A8

) a,

0= - clM'k'K

The last gives a = 0, which shows, as we might have expected,

that the rail, being perfectly smooth, has no power of impressing a

finite angular velocity by a horizontal reaction.

The two former give by the elimination of V,

h
M '

h

F M + W
a = M „ Mb*

a% + ¥ + M+M'
If the rail be perfectly rough, the equation (2) becomes by the

above reductions,

0= {F - (M + M') F + Mba] $s

+ \Fh
- Fb + MbV - Mia9 + 62 + k*) a] $6

- a'M'k'*W,
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with which must be combined the conditions,

r

, V
a = — •

r

Substituting these values of §& and a, and equating to zero the

coefficients of Ss, $0, we obtain

= F-(M+M')V + Mba -
M'V.^,

= Fh - Fb + MbV - M{a* + V + #) «.

The former of which gives

F+MbaV =

M+M'(l+^)

Substituting this in the second, and putting

q = ; re- > we find

E. h ~
ga " M '

a3 + If + qb
'

Hence in general,

E- LzSa ~ Ma* + h* + qb'

M'
where q = when -^ = o,

sv when the rail is smooth,M + M'

M'(l
+ ^)b— when the rail is perfectly rough.

M + M
(l

+ £)
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Since -= ™ is the vertical distance of the centre of gravity of

M + M below that of M ;
it follows that in the second case, as in

the first, the impulse must pass through the centre of gravity of the

whole carriage M + M', in order that no rotatory motion may be

impressed.

In the third case, if, for greater practical convenience, we wish to

determine the distance (q t suppose) of the point of quiescence below

the centre of gravity of the whole carriage, denoting by ft,
the height

of the centre of gravity of the whole carriage above the level of the

axle, we have

Mb Mb
ft =ft - M+ M'~ M+ M

k'
±d'

I
1 + v) °M

q ~ q M+ M'~
~

TTT FT M+ M

Reducing and substituting for b its value in
ft,,

we find

b
' M' m
v l£_~ M + M'' r*

r2

If, with Tredgold, we suppose M' = l£

M''

1?
* b

' M' h'* . .

°, vt = ng-nar, • ^ b
<

very nearly-

M + M + M '

r

r ' = 12/
, tons,

and M + M'

M 1
and at a rough estimate take - =

^,
we find q = .006^ Very nearly.

Thus, if b,= 12 inches, q,= .072 inches;

if b,
= 18 inches, q t

= .108;

if
ft,
- 2 feet, q,

= .144.

Hence we see, that the weight of the wheels and axles, and the

roughness or smoothness of the rail, make no difference perceptible in

practice ; and that in order to ensure the absence of rotatory motion in a
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vertical plane, arising from a horizontal collision, it is necessary and

sufficient that the centre of the buffers should be placed as nearly

as may be on the same level with the centre of gravity of the

engine or carriage.

If we suppose the rotatory motion impressed to be very small, it

is easy to calculate approximately the ascent of the elevated wheel.

M'
Neglecting -^ and calling 9 the small angle of elevation at the

time t, we shall have approximately,

. d'.iaO) P
Li L — jo" 4-

df
" *- 3f*

P denoting the vertical pressure at the rail,

__ d*9 agHence -77,
= —

, ,* ,

dt2 a 2 + k'

d9 agt
-j-

= Const. j-^-yjdt a2 + k

Fh - Magt
M{a% + k2

)

'

the initial angular velocity being „, 2 7^ .

Integrating again, so that 9 is when t = 0, we obtain

2Fht- Magt""
2 M(a

2 + k2

)

'

Hence, 9 attains its maximum value when Fh — Magt = 0, or

t = ^rr
—

. and at that moment the value of 9 is

Mag'
— 2M2

ag(a' + k2

)'

If we suppose the centre of gravity to be situated half way be-

tween the two axles, multiplying by 2 a, we find for the extreme

elevation of the wheels, when the disturbance is small, the expression

F*h*
M 2

g(a
2 +k2

)

;
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a quantity, which it is desirable to render as small as possible, in order

to ensure safety to the engine or carriage under ordinary circumstances.

It has lately been the subject of discussion, whether, by increasing

the distance between the bearings, the proportionate increase of the

linear ascent of the wheel, due to a given angular rotation, would not

increase the danger of running off the rail.

The preceding result shows, that no such danger is to be feared,

but that, on the contrary, the increased linear ascent of the wheel,

due to the greater length of revolving radius, is far more than com-

pensated by the diminution of the angular velocity itself; and, as

regards the comparative safety of four-wheeled and six-wheeled engines,

it shows a decided advantage in favour of the latter :—
1st, because they admit more readily of the diminution of h by

placing the centre of gravity lower.

2nd, on account of their greater mass.

3rd, on account of the greater distance between their centre of

gravity and the axles of the fore and hind wheels.

4th, on account of the increased value of k, the radius of gyration.

P. S. Since the above communication was read, an equally dis-

tressing event has taken place on the Great Western Railway, which

affords a striking illustration of the importance of these principles.

The persons who travelled upon or next to the luggage trucks were

the unfortunate victims on this occasion, and the fatal consequences ap-

pear to have arisen from the rolling of the trucks one over another, on

the train being unexpectedly stopped by a fall of earth lying upon
the railway. Had the buffers been placed at the proper horizontal

level, this rolling motion could not have taken place, and the loss of

human life might have been prevented.

J. POWER.
Trinity Hall,

April 12, 1842.
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XVIII. Discussion of the Question:—Are Cause and Effect successive

or simultaneous? By the Rev. W. Whewell, B.D., Master of

Trinity College, and Professor of Moral Philosophy,

[Read March 14, 1842.]

I have at various times laid before this Society dissertations on the

metaphysical grounds and elements of our knowledge, and especially on the

foundations of the science of mechanics. As these speculations have not

failed to excite some attention, both here and elsewhere, I am tempted
to bring forward in the same manner some additional disquisitions of

the same kind. Indeed, the immediate occasion of the present memoir

is of itself an evidence that such subjects are not supposed to be without

their interest for the general reader; for I am led to the views and reason-

ings which I am now about to lay before the Society, by some remarks

in one of our most popular Reviews, {The Quarterly Review, Article on

the History and Philosophy of the Inductive Sciences. June 1841.) A
writer of singular acuteness and comprehensiveness of view has there made

remarks upon the doctrines which I had delivered in the "
Philosophy of

the Inductive Sciences," which remarks appear to me in the highest degree

instructive and philosophical. I am not, however, going here to discuss

fully the doctrines contained in this critique. With respect to its general

tendency, I will only observe, that the author does not accept, in the

form in which I had given it, the account of the origin and ground of

necessary and universal truths. I had stated that our knowledge is de-

rived from Sensations and Ideas ; and that Ideas, which are the conditions of

perception, such as space, time, likeness, cause, make universal and necessary

knowledge possible ; whereas, if knowledge were derived from Sensation

alone, it could not have those characters. I have moreover enumerated a

M M 2
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long series of Fundamental Ideas as the bases of a corresponding series of

sciences, of which sciences I have shown also, by an historical survey, that

they claim to possess universal truths, and have their claims allowed. I

have gone further: for I have stated the Axioms which flow from these

Fundamental Ideas, and which are the logical grounds of necessity and uni-

versality in the truths of each science, when the science is presented in the

form of a demonstrated system. The Reviewer does not assent to this

doctrine, nor to the argument by which it is supported ; namely, that Ex-

perience cannot lead to universal truths, except by means of a universal Idea

supplied by the mind, and infused into the particular facts which observa-

tion ministers. He considers that the existence of universal truths in our

knowledge may be explained otherwise. He holds that it is a sufficient

account of the matter to say that we pass from special experience to

universal truth in virtue of "the inductive propensity—the irresistible

impulse of the mind to generalize ad infinitum? I shall not here dwell

upon very strong reasons which may be assigned, as I conceive, for not

accepting this as a full and satisfactory explanation of the difficulty.

Instead of doing so, I shall here content myself with remarking, that

even if we adopt the Reviewer's expressions, we must still contend

that there are different forms of the impulse of the mind to generalize,

corresponding to each of the Fundamental Ideas of our system. These

Fundamental Ideas, if they be nothing else, must at least be accepted

as a classification of the modes of action of the Inductive Propensity,
—>

as so many different paths and tendencies of the Generalizing Impulse :

and the Axioms which I have stated as the express results of the Fun-

damental Ideas, and as the steps by which those Ideas make universal truths

possible, are still no less worthy of notice, if they are stated as the results

of our Generalizing Impulse; and as the steps by which that Impulse,

in its many various forms, makes universal truths possible. The Gene-

ralizing Impulse in that operation by which it leads us to the Axioms

of geometry, and to those of mechanics, takes very different courses ; and

these courses may well deserve to be separately studied. And perhaps,

even if we accept this view of the philosophy of our knowledge, no

simpler or clearer way can be found of describing and distinguishing

these fundamentally different operations of the Inductive Propensity,
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than by saying, that in the one case it proceeds according to the Idea of

Space, in another according to the Idea of Mechanical Cause; and the

like phraseology may be employed for all the other cases.

This then being understood, my present object is to consider some

very remarkable, and, as appears to me, novel views of the Idea of

Cause which the Reviewer propounds. And these may be best brought
under our discussion by considering them as an attempt to solve the

question, Whether, according to our fundamental apprehensions of the

relation of Cause and Effect, effect follows cause in the order of time,

or is simultaneous with it.

At first sight, this question may seem to be completely decided by
our fundamental convictions respecting cause and effect, and by the axioms

which have been propounded by almost all writers, and have obtained

universal currency among reasoners on this subject. That the cause must

precede the effect,
—that the effect must follow the cause,—are, it might

seem, self-evident truths, assumed and assented to by all persons in all reason-

ings in which those notions occur. Such a doctrine is commonly asserted in

general terms, and seems to be verified in all the applications of the idea

of cause. A heavy body produces motion by its weight; the motion

produced is subsequent in time to the pressure which the weight exerts.

In a machine, bodies push or strike each other, and so produce a series

of motions
; each motion, in this case, is the result of the motions and

configurations which have preceded it. The whole series of such motions

employs time; and this time is filled up and measured by the series

of causes and effects, the effects being, in their turn, causes of other

effects. This is the common mode of apprehending the universal course

of events, in which the chain of causation, and the progress of time, are

contemplated as each the necessary condition and accompaniment of

the other.

But this, the Critic remarks, is not true in direct causation. " If the

antecedence and consequence in question be understood as the interpo-
sition of an interval of time, however small, between the action of the

cause and the production of the effect, we regard it as inadmissible.

In the production of motion by force, for instance, though the effect be
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cumulative with continued exertion of the cause, yet each elementary
or individual action is, to our apprehension, instanter accompanied with

its corresponding increment of momentum in the body moved. In all

dynamical reasonings no one has ever thought of interposing an instant

of time between the action and its resulting momentum ; nor does it

appear necessary." This is so evident, that it appears strange it should

have the air of novelty ; yet, so far as I am aware, the matter has never

before been put in the same point of view. But this being the case,

the question occurs, how it is that time seems to be employed in the

progress from cause to effect? How is it that the opinion of the effect

being subsequent to the cause has generally obtained? And to this the

Critic's answer is obvious :
—it is so in cases of indirect or of cumulative

effect. If a ball A strikes another, B, and puts it in motion, and B strikes

C, and puts it in motion, A's impact may be considered as the cause,

though not the direct cause, of C's motion. Now time, namely the time of

l?'s motion after it is struck by A, and before it strikes C, intervenes

between A's impact and the beginning of Cs motion : that is, between

the cause and its effect. In this sense, the effect is subsequent to the

cause. Again, if a body be put in motion by a series of impulses acting

at finite intervals of time, all in the same direction, the motion at the

end of all these intervals is the effect of all the impulses, and exists

after they have all acted. It is the accumulated effect, and subsequent
to each separate action of the cause. But in this case, each impulse

produces its effect instantaneously, and the time is employed, not in the

transition from any cause to its effect, but in the intervals between the

action of the several causes, during which intervals the body goes on with

the velocity already communicated to it. In each impulse, force produces
motion : and the motion goes on till a new change takes place, by the

same kind of action. The force may be said, in the language employed

by the Critic, to be transformed into momentum ;
and in the successive

impulses, successive portions of force are thus transformed
; while in the

intervening intervals, the force thus transformed into momentum is

carried by the body from one place to another, where a new change
awaits it.

" The cause is absorbed and transformed into effect, and therein

treasured up," Hence, as the Writer says,
" The time lost in cases of
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indirect physical causation is that consumed in the movements which take

place among the parts of the mechanism set in action, by which the

active forces so transformed into mechanism are transported over intervals

of space to new points of action, the motion of matter in such cases

being regarded as a mere carrier of force":—and when force is directly

counteracted by force, their mutual destruction must be conceived, as

the Reviewer says, to be instantaneous. We can therefore hardly
resist his conclusion, that men have been misled in assuming sequence as

a feature in the relation of cause and effect ;
and we may readily assent

to his suggestion, that sequence, when observed, is to be held as a sure

indication of indirect action, accompanied with a movement of parts.

But yet if we turn for a moment to other kinds of causation, we
seem to be compelled at every step to recognize the truth of the

usual maxim upon this subject, that effects are subsequent to causes.

Is not poison, taken at a certain moment, the cause of disorder and

death which follow at a subsequent period? Is not a man's early pru-
dence often the cause of his prosperity in later life, and his folly, though
for a moment it may produce gratification, finally the cause of his

ruin? And even in the case of mechanism, if, in a clock which goes

rightly, we alter the length of the pendulum, is not this alteration the

cause of an alteration which afterwards takes place in the rate of the

clock's going? Are not all these, and innumerable other cases, instances

in which the usual notion of the effect following the cause is verified?

and are they not irreconcileable with the new doctrine of cause and effect

being simultaneous?

In order to disentangle this apparent confusion, let us first consider

the case last mentioned, of a clock, in which some alteration is made which

affects the i*ate of going.

So long as the parts of the clock remain unaltered, its rate will remain

unaltered
;
and any part which is considered as capable of alteration, may

be considered as, if we please, the cause of the unaltered rate, by being
itself unaltered. But we do not usually introduce the positive idea of

cause, to correspond with this negation of change. If we speak of the

rate as unaltered, we may also say that it is so because there is no cause
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of alteration. The steady rate is the indication of the absence of any cause

of alteration
;
and the rate of going measures the progress of time, in a

state of things in which causes of change are thus excluded. If an altera-

tion takes place in any part of the clock, once for all, the rate is altered ;

but the new rate is steady as the old rate was, and, like it, measures the

uniform progress of time. But the difference between the new rate

and the old is occasioned by the difference of the parts of the clock ; and

the new rate may very properly be said to be caused by the change of

the parts, and to be subsequent to it : for it does prevail after the change,

and does not prevail before.

But how is this view to be reconciled with the one just quoted from

the Reviewer, and, as it appeared, satisfactorily proved by him ; accord-

ing to which all mechanical effects are simultaneous with their causes,

and not subsequent to them? We have here the two views in close

contact, and in seeming opposition.

In the going of a clock, the parts are in motion ; and these motions

are determined by forces arising from the form and connexion of the

parts of the mechanism. Each of the forces thus exerted at any instant

produces its effect at the same instant ;
and thus, so far as the term cause

refers to such instantaneous forces, the cause and the effect are simul-

taneous. But if such instantaneous forces act at successive intervals of

time, the motion during each interval is unaltered, and by its uniform

progress measures the progress of time. And thus the motion of the

machine consists of a series of intervals, during each of which the motion

is uniform, and measures the time; separated from each other by a series

of changes, at each of which the change measures the instantaneous

force, and is simultaneous with it. And if, in this case, we suppose, at any

point of time, the instantaneous forces to cease, the succession of them

being terminated, from that point of time the motion would be uniform.

And since the rate of the motion in each interval of time is determined

by the instantaneous force which last acted and by the preceding motion,

the rate of the motion in each interval of time is determined by all the

preceding instantaneous forces. Hence, when the series of instantaneous

forces stops, the rate at which the motion goes on permanently, from that
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point of time, is determined by the antecedent series of such forces, which

series may be considered as an aggregate cause ; and hence it appears, that

the permanent effect is determined by the aggregate cause ; and in this

sense the effect is subsequent to the cause.

Thus we obtain, in this case, a solution of the difficulty which is placed

before us. The instantaneous effect or change is simultaneous with the

instantaneous force or cause by which it is produced. But if we con-

sider a series of such instantaneous forces as a single aggregate cause, and

the final condition as a permanent effect of this cause, the effect is sub-

sequent to the cause. In this case, the cause is immediately succeeded

by the effect. The cause acts in time: the effect goes on in time. The

times occupied by the cause and by the effect succeed each other,

the one ending at the point of time at which the other begins. But the

time which the cause occupies is really composed of a series of instants

of uniform motion interposed between instantaneous forces ; and during
the time that this series of causes is going on, to make up the aggregate

cause, a series of effects is going on to make up the final effect. There

is a progressive cause and a progressive effect which go on together,

and occupy the same finite time ; and this simultaneous progression

is composed of all the simultaneous instantaneous steps of cause and

effect. The aggregate cause is the sum of the progression of causes;

the final effect is the last term of the progression of effects. At each

step, as the Reviewer says, cause is transformed into effect ; and it is

treasured up in the results during the intermediate intervals ; and the time

occupied is not the time which intervenes between cause and effect at

each step, but the time which intervenes between these transformations.

I have supposed forces to act at distinct instants, and to cease to act

in the intervals between ;
and then, the aggregate of such intervals to make

up a finite time, during which an aggregate force acts. But if the action

of the force be rigorously continuous, it will easily be seen that all the

consequences as to cause and effect will be the same; the discontinuous action

being merely the usual artifice by which, in mathematical reasonings, we

obtain results respecting continuous changes. It will still be true, that

the uniform motion which takes place after a continuous force has acted, is

the effect subsequent to the cause; while the change which takes place
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at any instant by the action of the force, is the instantaneous effect simul-

taneous with the cause.

It may be objected, that this solution does not appear immediately
to apply : for the motion of a clock is not uniform during any portion

of the time. The parts move by intervals of varied motion and of rest ;

or by oscillations backwards and forwards; and the succession of forces

which acts during any oscillation, or any cycle of motion, is repeated

during the succeeding oscillation or cycle, and so on indefinitely ; and if

an alteration be made in the parts, it is not a change once for all, but

recurs in its operation in every cycle of the motion.

But it will be found that this circumstance does not prevent the same

explanation from being still applicable with a slight modification. In-

stead of uniform motion in the intervals of causation, we shall have to

speak of steady going: and instead of considering all the forces which

affect the motion as causes of change of uniform motion, we shall have

to speak of changes in the parts of the mechanism as causes of change

of rate of going. With this modification, it will still be true, that

any instantaneous cause produces its instantaneous effect simultane-

ously, while the permanent effect is subsequent to the change which

is its cause. The steady going of the clock is assumed as a normal

condition, in which it measures the progress of time ; and in this assump-

tion, the notion of cause and effect is not brought into view. But a

steady rate thus denoting the mean passage of time, a change in the

rate indicates a cause of change. The change of rate, as an instantaneous

transition from one rate to another, is simultaneous with the change
in the parts. But then the changed rate as a continued condition in

which, no new change supervening, the rate again measures the progress

of time, is subsequent to the change of parts, for it begins when that ends,

and continues when the progress of that has ceased.

If, however, this be a satisfactory solution of the difficulty in the case

of mechanism, how shall we apply the same views to the other cases ?

Growth, the effect of food, is subsequent to the act of taking food ;

disorder, the effect of poison, is subsequent to the introduction of poison

into the system. Can we say that the animal would continue unchanged
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if it were not to take food
;
and that food is the cause of a change,

namely, of growth ? This is manifestly false ;
for if the animal were

not to take food, it would soon perish. But the analogy of the former

case, of the clock, will enable us to avoid this perplexity. As we assumed

a steady rate of going in the clock to be the measure of time when

we considered the effect of mechanism, so we assume a steady rate of

action in the animal functions to be the measure of the progress of

time when we consider the causes which act upon the development
and health of animals. Digestion, and of course nutrition, are a part

of this normal condition ; they are involved in the steady going of the

animal mechanism, and we must suppose these functions to go regularly

on, in order that the animal may preserve its character of animal. Food

and digestion may be considered as causes of the continued existence of

the animal, in the same way in which the form of the parts of a clock

is the cause of the steady going of a clock. And when we come to

consider causes of change, this kind of causation, which produces a normal

condition of things, merely measuring the flow of time, is left out of our

account. We can conceive an uniform condition of animal existence, the

animal neither growing nor wasting. This being taken as the normal condi-

tion, any deviation from this condition indicates a cause, and is taken as the

evidence and measure of the cause of change. And thus, in a growing animal,

the food partly keeps the animal in continued animal existence, and partly,

and in addition to this, causes its growth. Food, in the former view, is

always circulating in the system, and is supposed to be uniformly adminis-

tered ; the cycles of nutrition being merged in the notion of uniform

existence, as the oscillations of the pendulum in a clock are merged in

the notion of uniform going ; and the elementary steps of nutrition which

are, in this view, supposed to take place at each instant, produce their in-

stantaneous effect, for they are requisite in the cycle of animal processes

which goes on from instant to instant. But on the other hand, in con-

sidering growth, we compare the state of an animal with a preceding

state, and consider the nutriment taken in the intervening time as the

cause of the change : hence this nutriment, as an aggregate, is considered

as the cause of growth of the animal; and in this view the effect is

subsequent to the cause. But yet here, as in the case of mechanism,

N N2
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the progressive effect is simultaneous, step by step, with the progressive
eause. There is a series of operations ; as for instance, intussusception,

digestion, assimilation, growth : each of these is a progressive operation ;

and in the progress of each operation, the steps of the effect and the

instantaneous forces are simultaneous. But the end of one operation
is the beginning of the next, or at least in part, and hence we have

time occupied by the succession. The end of intussusception is the be-

ginning of digestion, the end of digestion the beginning of assimilation,

and so on. These aggregate effects succeed each other; and hence

growth is subsequent to the taking of food
; though each instantaneous

force of animal life, no less than of mechanism, produces an effect

simultaneous with its action. Each of these separate operations is an

aggregate operation, and occupies time; and each aggregate effect is a

condition of the action of the cause in the next operation.

Again ; if an animal in a permanent condition, neither waxing nor

wasting, may be taken as the normal state in which the functions of life

measure time, in order that we may consider growth as an effect, to be

referred to food as cause; we may, for other purposes, consider, as the

normal condition, an animal waxing and then wasting, according to the

usual law of animal life : and we must take this, the healthy progress of

an animal, as our normal condition, if we have to consider causes which

produce disease. If we have to refer the morbid condition of an animal

to the influence of poison, for example, we must consider how far the

condition deviates from what it would have been if the poison had not

been taken into the frame. The usual progress of the animal func-

tions including its growth, is the measure of time; the deviation from

this usual progress is the indication of cause; and the effect of the poi-

son is subsequent to the cause, because the poison acts through the

cycle of the animal functions just mentioned, which occupies time
;
and

because the taking the poison into the system, not any subsequent
action of the animal forces in the system, is considered as the event

which we must contemplate as a cause. To resume the analogy of the

clock : the rate of the clock is altered by altering the parts ; but this

alteration itself may occupy time ; as if we alter the rate of a clock

by applying a drop of acid, which gradually eats off a part of the



PROFESSOR WHEWELL, ON CAUSE AND EFFECT. 329

pendulum, the corrosion, as an aggregate effect, occupies time; and

the rates before and after the change are separated by this time. But

the application of the drop is the cause; and thus, in this case the final

effect is subsequent to the cause, though here, as in the case of me-

chanism, the instantaneous forces always produce a simultaneous effect.

Thus we have in every case a uniform state, or a state which is

considered as \xniform, or at least normal; and which is taken as the

indication and measure of time; and we have also change, which is con-

templated as a deviation from uniformity, and is taken as the indication

and measure of cause. The uniform state may be one which never

exists, being purely imaginary ; as the case in which no forces act ; and

the case in which animal functions go on permanently, the animal neither

growing nor wasting. The normal state may also be a state in which

change is constantly taking place, as, in fact, even a state of motion is

a state of change; such states also are, in a further sense, that of a

clock going by starts, and that of an animal constantly growing : in

these cases the changes are all merged in a wider view of uni-

formity, so that these are taken as the normal states. And in all these

cases, successive changes which take place are separated by intervals of

time, measured by the normal progress ;
and each change is produced by

some simultaneous instantaneous cause. But taking the cause in a larger

sense, we group these instantaneous causes, and perhaps omit in our

contemplation some of the intervening intervals ; and thus assign the

cause to a preceding, and the effect to a succeeding time.

I may observe further, as a corollary from what has been said, that

the measure of time is different, when we consider different kinds of

causation ;
and in each case, is homogeneous with the changes which

causation effects. In the consideration of mechanical causes, we measure

time by mechanical changes;—by uniform motion, or uniform succession

of cycles of motion
; by the rotation of a wheel, or the oscillation of

a pendulum. But if we have to consider physiological changes, the

progress of time is physiologically measured;—by the normal progress

of vital operations ; by the circulation, digestion or developement of the

organized body; by the pulse, or by the growth. These different measures

of time give to time, so far as it is exhibited by facts and events,
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a different character in the different cases. Phenomenal time has a dif-

ferent nature and essence according to the kind of the changes which

we consider, and which gives us our sole phenomenal indication of

cause.

I fear that I am traveling into matters too abstruse and metaphysical
for the occasion : but before I conclude, I will present one other aspect

of the subject.

In stating the difficulty, I referred to cases of moral as well as physical

causation ; as when prudence produces prosperity, or when folly produces
ruin. It may be asked, whether we are here to apply the same ex-

planation ;
—whether we are to assume a normal condition of human

existence, in which neither prudence nor folly are displayed, neither pros-

perity nor adversity produced ;
—whether we are to conceive the progress

of such a state to measure the progress of time, and deviations from it

to denote causes of the kind mentioned. It may be asked further, whether,

if we do make this supposition, we can resolve the influence of such causes

as prudence or imprudence into instantaneous acts, which produce their

effects immediately : and which occupy time only by being separated by
intervals of the inactive normal moral condition. To this I must here

reply, that the discussion of such questions would carry me too far, and

would involve speculations not included within the acknowledged domain

of this Society, from which I therefore abstain. But I may say, before

quitting the subject, that I do not think the suppositions above suggested

are untenable ; and that in order to include moral causation under the maxims

of causation in general, we must necessarily make some such hypothesis.

The peculiarity of that kind of causation which the will and the character

exert, and which is exerted upon the will and the character, would make

this case far more complex and difficult than those already considered ; but,

at the same time, would offer us the means of explaining what may seem

harsh, in the above analogy. For instance, we should have to assume

such a maxim as this : that in moral causation, time is not to be measured

by the flow of mechanical or physiological events ;
—not by the clock, or

by the pulse. Moral causation has its own clock, its own pulse, in the

progress of man's moral being ; and by this measure of time is the relation

of moral cause and effect to be defined.



PROFESSOR WHEWELL, ON CAUSE AND EFFECT. 331

That in estimating moral causation, the progress of time is necessarily

estimated by moral changes, and not by machinery,
—by the progress of

events, and not by the going of the clock,—is a truth familiar as a practical

maxim to all who give their thoughts to dramatic or narrative fictions.

Who feels any thing incongruous or extravagantly hurried in the progress of

events in that great exhibition of moral causation, the tragedy of Othello?

If we were asked what time those vast and terrible and complex changes
of the being and feelings of the characters occupy, we should say, that,

measured on its own scale, the event is of great extent ;
—that the trans-

action is of considerable magnitude in all ways. But if, with previous

critics, we look into the progress of time by the day and the hour—
what is the measure of this history? Forty-eight hours.

But I am going beyond the boundaries of the speculations which we

usually follow in this room, and will conclude.

W. WHEWELL.





XIX. On the Motion of a small Sphere acted upon by the Vibrations of

an Elastic Medium. By the Rev. James Challis, M.A., Plumian

Professor of Astronomy in the University of Cambridge.

[Read April 26, 1841.]

It is proposed in this Essay to give a mathematical investigation re-

specting the motion of a small solid sphere submitted to the dynamical

action of the vibrations of a medium so constituted that the pressure {p)

and density (p) are related to each other by the equation p =
ofp, a2

being

a certain constant.

1. For this purpose it will be convenient to obtain, first, the equations

which apply to the motion of such a medium when directed to or from a

centre, whether the centre be moving or stationary.

Conceive P to be a fixed point in space at which the motion of the fluid

is directed to or from a moving centre C. Describe about C as a centre a

spherical surface always passing through the point P, and concentric with

this another passing through P', a point in CP produced. Let, at a given

time t, CP = r, and CP' = r, or r + $r, $r being supposed very small.

Conceive now a conical surface, with an indefinitely small vertical angle, to

have its vertex at C, and its axis coinciding with CPP, and let it always

include the same portion (*»*) of the interior spherical surface. Then if

a = the velocity of the centre C resolved in the direction of r, the radius

CP at the time t + t, (t being very small) will become r ± ax, and CP'

will become r + Ir ± ar, the interval $r being supposed not to vary with

the time. Hence the portion of the exterior surface included by the

Vol. VII. Part III. Oo
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conical surface at the time t + r is mz
, (

=—I
) or /»

2
. ( 1 + —

V r ± nx J V r ± ar
a Jm

and this, neglecting terms of the order Sr x a-r, is equal to —-
.

Again, let v and p be the velocity and density of the fluid which passed

the area m2 at the time /, and v
/t p , the values of the same quantities at any

time t + t. Now the quantity of fluid which in the small time dt passes m%

18 equal to jm
i

p l
v

idT, the integral being taken from t = to t = St. And
because

d.pv ,

pv t

= pv +
~~jr-

~r very nearly,

this integral is equal to

,
*

, d.pv ^ty
nfpvSt + m- .

—~
.
±~ + &c.

Also if v], p[ be the velocity and density of the fluid which is passing the

area —— of the exterior surface at the time t + t, the quantity of fluid
r

—
j— vlp'dr, taken from r = to r = St.

And, because v] and
p,'

are what v and p become by very small changes of

time and place,

, , d.vp d.vp*

Hence,

/•jbV" , , 7 m2/ 4

r. d.vp d.vp, .'

r4 l r dt 2 dr

Consequently, supposing the velocity positive when directed from the

centre, the increment of matter in the space between the two areas in the

time St, is ultimately,

~
^r^v P +

C

-dT lr)
~ "*v

p}*
e

'>
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or, putting v'p for vp + —7— Sr,
dr

m*St.
1

r~v p
— rvp

Now if any point be selected between P and P, the radius to which at

the time t is r
t , by what has been already shewn, the transverse section of

the cone through this point at the time t + St is with sufficient approxima-

»«V,
2

tion —-'-
, and is therefore independent of St. Hence at any instant

during the interval It the content of the conical frustum is
•

f—jr dr,

'ill*

{from r
t
= r to r

t

=
r'\, or — (r'

3 -
r»). The increment of density (Sp)

in that space in the time St is consequently,

m 2

St(r'°p'v
-

r'pv) 3rs

r~ m? (r'
3 — r3

)

'

Hence, fe
+ ?(^ ~f> ) - „

d£ r 3 — r3

and passing from differences to differentials,

&-33£*«~r f
<"

It is plain that since i3 has been assumed to be a fixed point of

space, the differential coefficients here are partial. The above equation,
with

P =
<*P (2),

and that derived from D'Alembert's Principle, viz.

£<&- »
are the three eqviations which determine the circumstances of the motion.

As the velocity (a) of the centre C in no way enters into them, we

may conclude that the same equations apply to motion tending to or from
a moving centre as to motion tending to or from a fixed centre.

002
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2. From the equations (1), (2), (3), others more immediately appli-

cable to the question proposed to be discussed will now be deduced.

The equation (1) is equivalent to

dp dv vdp 2v
W;

pdt dr pdr r

and by substituting for p in (3) from (2) there results,

a' dp dv vdv

Jt;d7
+

(rt
+
-dT

= °
<5) -

If now we assume
<p'

to be such a function of r and t that the

partial differential coefficient -T~ is equal to v, and substitute this ex-

pression for v in (5), the equation is integrable with respect to r. The

result is,

* Nap. log. P + *£ +^ =f(t).

To get rid of the arbitrary function of the time, suppose

$'=<!> + ff(t)dt.

Then ^ = ^4-/(0, and^' = ^t Hence
dt at ° v ' dr dr

" n"p- •* * + ft
+^ - ° <6>

Obtaining from this equation
—
j and —

p-
, substituting their values in

(4), and putting
~ for v, the result will be,

d*<p l d<p \ 1 d'(p 2 d<p d2

<j> 2^ = ,

dr2
\ (fdr*) a* dt1

a? dr drdt r dr

3. Before making use of this equation it will be necessary to

consider the comparative values of its terms under the circumstances

in which we propose to apply it. The circumstances are, that v is

very small compared to a, and r always exceedingly small compared

to the breadths of the waves whose dynamical action is to be inves-

tigated.



ACTED UPON BY THE VIBRATIONS OF AN ELASTIC MEDIUM. 337

First, it is plain that the terms having or in their denominators

will be small compared to the others. Neglecting those terms, or,

which is the same thing, considering a infinite, we have the case of

an incompressible fluid, and the equation applicable to it is,

d'<p d(p d*- r(P_ n
dr'!

' '

rdr dr*

The integral of this equation is,

Hence
d-± -*&

t
and % = -££ + F>(t).dr r* dt r v J

The known equation which gives the pressure (p) of an incom-

pressible fluid is

d(b v* n

Hence by substitution,

•*& -4 - »»
As this equation contains two arbitrary functions, two conditions of

the motion may be arbitrarily assumed. Let us assume for one con-

dition, that the excess of the pressure (jo) above the pressure n, which

would exist in the undisturbed state of the fluid, is solely owing to

a velocity arbitrarily impressed in the direction of r. Then v and
Af{t)

being supposed to vanish when p =
IT, we must have,

p — n = -——— .

As a second condition, let us suppose that the velocity is impressed
at a given distance (r), and is given at any time t by the expression
m sin bt. Hence f(t) = mr> sin bt, and f(t) = bmr- cos bt. Consequently

by substituting,

p - n = mbr cos bt—— sin* bt,
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an exact equation, which gives the pressure at the distance r at any
time. The two terms will be of the same order if m be not very

small compared to 2br.

Next, let us try the effect of retaining one of the omitted terms

of the equation (7) and neglecting the others. Retaining, first, the

term -£ x „ , „ , and putting v for -^ , we shall have,
dr" adr2 l ° dr

dv t v~\ 2v _
dr \ a2

) r

dv vdv 2
or — —j- + - = 0.

vdr a'dr r

Integrating with respect to r,

v*

Nap. log. vr ! - -3 = Nap. log./(0 ;

.-. e*» =f(t)A =
/'(/) (1 + £ + &c.)

Hence neglecting terms removed in order by two degrees from those

fit)
retained, v = ^—^ • This is the same result as in the case of the in-

r

compressible fluid, and by reasoning in the same manner as for that

case, it will be found from equation (6) that

o«Nap. log. P=-^-£- **(/).

If p
= 1 + o-, and we assume that the value of a depends only on

a disturbance in the direction of r, it will follow that F' (t)
= 0, v and

,f'(t) being supposed to vanish when p — 1.

Hence P = e* r ™ = 1 +«-^ ; , nearly,

J 2 fit) V* ,

and (i"cr ='/—^-L nearly.
r 2 J

It appears, therefore, by the foregoing reasoning, that whenever

—J, is of the same order as t>
2
, the first term introduced into the

r

expression for the pressure by the term of equation (7) which has now
been considered, is of the order of v\
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Again, let us retain the term —-?- , ,.. , rejecting the others. Then

d*<j> _ 2
dj>

d2

<f> 2dcj>

dr11 a2
'

dr
'

drdt rdr
~

'

dv 2 d2

(p 2

tar a2
'

drdt r

Hence, integrating with respect to r,

2 d<t>

Nap. log. vr2 - -
2

.

-^
= Nap. log./(0;

.-. vr2 = f(t) .&% =f(t) •

(l
+
|. -£)

, nearly.

Under the same conditions as in the last case, the first approximations

to the value of v and -3? are ^-^ and - ——
. Substituting- this latter

at r* r &

quantity in the above equation,

dr r* «y '

and integrating with respect to r, without adding an arbitrary function

of the time,

d,= /(*> . /CO/'**) .

v r d'r*
'

.-.
** = _•££> . l/'(0}'+/(0/'(0
flfa r aV-

To take a particular instance, let the velocity impressed at the time t

at the distance r from the centre, and in the direction of this radius,

be m sin —-—
, a being supposed very large compared to m, and X very

large compared to r. Then, for first approximations,

,Vj,. , . 2Trat „,.. 2-namr2
9,-n-at , „,,.. 4nrWmr- . 2ttuI

f (t)
= m r2

sin -y- ,f(t) =—— - cos— , and/ (0 - sin -^—
These values will enable us to estimate the order of the second term of

the above expression for
-j-

. By substitution they give for this term,
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4Tr-'/«V iirat , . , ... j , , • e ., , „ m~- r*
-

„
— cos , which, with regard to «- is of the order of —- x —

,XX a X

that is, of the fourth order; whilst the first term in the expression for

-r- is with regard to a of the order of — x —
, that is, of the second

dt fo a X

order. Hence we may conclude as before that the first term introduced

into the expression for the pressure by the term of equation (7) just

considered, is of the fourth order.

4. Lastly, let us retain the term
;

. -,
™

of equation (7), and

reject the other small terms. We shall then have,

#£ 1 cP$ 2 d±_ Q . Qr d\r<f> d\r<p

The known integral of this equation is

r<p =f(r -
at) + F(r + at).

The second arbitrary function applies to a disturbance which causes

propagation towards the centre; and as such a motion is excluded by
the nature of the question to the solution of which the present reasoning

is directed, I shall suppose this function to vanish. Then,

f(r - at)
<*>

= -
r

•

d<
t> - „ f'(r

- at
)

dt r

d£ _ fir -at) f(r - at)

dr
'

r r2

As an application of this solution, let us suppose the velocity impressed

at any time t in the direction of r, and at the distance r from the centre,

to be m(p(t). Then, putting for shortness' sake u for f{r — at), we

shall have

1 du u
r ar dt r

du a .,-.«
or —.—h

-
. u 4- marcb (t)

= 0,
at r
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an equation in which u and / are the only variables, and which serves

to determine the value of the function f{r —
at) from the given value

of
<j>(t). This equation gives by integration,

_at _at at

u = Ce r — mare r
fe

r
<p(t)dt,

du Ca —— —— —
-r. = e

r - mare r

fe
r

<p'(t)dt.

Now
-j-

= - af'(r -
at) = r-£. Therefore

deb Ca -% -^ r-
,

dt
=

~~r^
e "- mae r

fe
r

<p\t)dt (8),

As an example of the application of this formula, let us suppose

as before that <p{t) = sin ^_* . Then 0'(/) = *^cos—'. Also

e cos —-— dt =T 2tt«/ _, \r XX X

7 (a 2irat Zira . 2nat\eM-.cos —— —— sin

r*
+

\*

at

\e r
. (2-n-at

.sin i

2ira
(%-n-at \a COS (_ -

«)
,

by substituting tan a for . Hence

rf0 Ca -g . /27ra#= « e — 7»a sin i

a*rf r.2
a COS (

— a 1 .

and consequently by equation (6),

«<Nap. log.p =
Ca

e
-1 + Hasina cos

(!=2f
-

a)
-
|%in*^ (9).

It will be seen by the above result that the term of equation (7),

retained in this instance, introduces into the expression for p a quantity

of the order of — x sin
2
a, or of - x r?, and therefore of the third order,

fit o, \

Hence that term is more considerable than the other small terms of

equation (7), and we may be confident that by retaining it and rejecting

Vol. VII. Part III. P P
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the others, our approximation will be exact to at least terms of the

second order.

To determine the arbitrary constant in the equation above, let us

suppose that when t = 0, p = 1. Hence

Ca
—t- + ma sin a cos a = ;r

j 2 xt i f ~T . (2-n-at \) m* . n %wat
and a Nap. log. p = ma sin a I — cos o e r + cos I a > — — sin- .

It is worthy of remark, that if we confine ourselves to quantities of

the second order, the above result coincides with that obtained in Art. 3,

for an incompressible fluid. For to that degree of approximation
2ttT

sin a = —— ; and if p « I + <r, a: Nap. log. p = a* a. Also the term in-

at

volving e~ T will disappear after a very short time on account of the

great magnitude of -. Hence

„ 2ira Qirat m? . .Qicat
are = m . . r cos — sin* —-—

,

X X 2 X

which, by putting b for , evidently coincides with the result ob-
X

tained in Art. 3.

5. Prior to the consideration of the dynamical action of the fluid in

vibration on a small sphere, it will be convenient to determine the pressure

on the surface of a small sphere performing small rectilinear vibrations in

the fluid at rest.

The sphere is supposed to be perfectly smooth, and therefore incapable

of impressing motion on the fluid in directions perpendicular to the radii.

Hence the motion given to the fluid by the motion of the sphere is

directed to or from a moving centre. If V be the velocity of the sphere at

the time t, and 9 the angle which a radius to any point of the surface makes

with the straight line in which the centre is moving, VcosO is the velocity

impressed on the fluid at that point at the same time. Now as this normal

velocity varies at a given instant from one point to another of the surface,
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it follows that there will also be variation of density. The effect of this

variation of density will be to cause the motion of each particle in contact

with the spherical surface to be curvilinear, and to be continually directed

to or from the varying positions of the centre*. Hence the equation (1)

obtained in Article (1) will be applicable to the case before us by merely

substituting F'cos 9 for v. The same substitution being made in equation

(3), the three equations (1), (2), (3) may be immediately made use of for

our present purpose.

Let V =
mcp(t). Then (8) becomes for this case,

dd> Ca -Si -^1 r
aJ.

-j7
=

z~ e
T ~ am cos ® e

'

l
er <P'(t)dt,

and from equation (6),

fA at at at

a2

Nap. log. P = —T e~ ' + am cos 9e'~
fe

T
<p'(t)

dt - m2 cos2 6 ^j]
2
-

/'

— il

e
r

(p'{t)dt
= e r

\// (t), and that p
= 1, <p (t)

= 0, and

xj/ (t)
= k, when t — 0. Hence,

f
= —- + kam cos 6,

rl

J -2il <m2

and «2

Nap. log. P
= am cos 9 {$ (t)

- he r

\-~z- cos2 9 ^>(t)]\ (10.)
So

If we put 1 + er for p and neglect terms of the order of o-
2
, we shall

have a2

Nap. log. p = a*a = the effective pressure on a unit of surface

of the sphere. The effective pressure on the whole sphere estimated in

the positive direction of the sphere's motion is — l^r* fa
2 a sin 6 cos 6d0,

taken from 9 = to 8 = tt. The negative sign is prefixed because it has

been already assumed that the velocity of the fluid is positive when it tends

from a centre, and as the central velocity in this instance is m cos 9<p(t),

9 must be measured from the point of the sphere which is foremost when
the motion is in the positive direction, so that the resultant of the pressure
on an annulus of breadth rd9 and radius r sin 9 is in the negative direc-

tion when cos 9 is positive.

* See the proof of this assertion in the * Note
'

added to this paper.

PP2



344 PROFESSOR CHALLIS, ON THE MOTION OF A SMALL SPHERE

Now since / sin 6 cos
2 dO = -, and I sin 9 cos* 0d9 = 0, the whole

resulting pressure on the sphere is

47r«mr8
i. ... 7 -£l

3 VMO -** J-

And if 5 be the ratio of the density of the fluid to that of the sphere, the

accelerative force of the resistance of the fluid is

-Si
which on account of the very small factor e

r will after a short interval

become,

.—+«>•
6. Suppose, for example, the sphere to vibrate as a pendulum, and the

extent of the vibrations to be so small that the motion of the centre may
be considered rectilinear. Let / be the length of the pendulum, and x the

distance of the centre of the sphere at the time t from the position it would

have at rest. Then, taking the buoyancy of the fluid into account, we

have for the accelerative force of gravity
— —-

(1
-

$)•, and consequently,

by the foregoing reasoning,

d2x gx . «, amS -ili r zl d*x .. ,1

df I
' r \J mdf* J

_
T r

a

4d*x At Zfr d*x r%

d'x\ . _ , ,Now
J
e w dt = e

{a-dr-a'-d?)
yery nearly* Hence' b^ sub-

stituting,

atd*x _gx 1 — $ rS d3x kam§
df

~
T'TTS +

a{l+8)"3F
+
r(\+$)

e '

{ >'

Hence, for a first approximation, after a very small time,

d2x ffx /1 — Sd'x _ gx /l — 6\

df~~~T' [l+li

This equation not containing a is true of an incompressible fluid. It

is, in fact, when applied to this case, an exact equation, as appears
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from the reasoning in the Cambridge Philosophical Transactions, Vol. V.

Part ii. p. 200. By equating the factor in brackets to 1— n<>, it will

2
be seen that »= -—

r, which when S is very small is nearly equal to 2*.
1 + o

Before proceeding to a second approximation let us determine the

value of the constant h. This will be obtained by finding the value

f Cm*" "V tr il^ 7*

of -. ,
-

y—j-z> when £ = 0. Now from (11), neglecting the term
it Tit itt it' fw it t

involving
- as a factor, and differentiatings

at

('

dsx _ g dx \ — l ka?m§W ~~
T"dt *T+7

~
^(1 + ty

and from the same equation,

d2x _ r cPx gx 1 — 8 r e^r kamh - <£

df ad? T'l+S
~

a{l + 8)"dF
+
r(T+7j

* ''

Hence, supposing x = h and j- =0 when t= 0, we readily obtain,

Whence,

kam gh 1 — 5 kam$ kaml
r

= ~ T *

1+7
+
r(l+5)

2
+
RT+1)

kam _ gh n *s

d3x
Substituting now this value in the approximate expression for -r— ,

we get

d*x_ g dx l-S ghat °J-

d? -~l'dI'TT$ + ~iT- {1
-
S)e '

*
I have already obtained this result in the London and Edinburgh Philosophical Mag-

azine for September 1833 (p. 186), in the Cambridge Philosophical Transactions as above

cited, and more recently in the Philosophical Magazine for December 1840 (p. 46l). The

reasoning in the last of these solutions, not embracing those terms involving the square of

the velocity which may be of equal magnitude with terms retained, cannot be considered so

complete as that I have now given.
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and consequently by (11),

tff
=~

£ "l+a /a'(l + 3)
2
'</* T'm ,e '

Putting for shortness' sake n2 for *•-—
j,

we shall have

d*x n*r$ dx
, „>.

-i
-=- + ,.

• -T- + w2« = - rc
2
AS<?

r
.

a£2 « (1 + a) a£

r*

By integrating this equation and neglecting terms involving
—

,

which will be wholly insignificant, it will be found that

dx - "M '-—- = — hue 2 "(1+s>. sin nt,
at

by means of which equation the decrements of the successive arcs of

vibration may be calculated. It is remarkable that for an incompress-

ible fluid, for which a is infinitely great, there is no decrement of

the arcs excepting so far as it arises from friction and capillary at-

traction. The index of e in the equation above is too small to account

for the observed decrements in air, which must be mainly owing to

friction.

7. As another example, let the velocity = m(Z(l — e~ yt
) + m<p(t)

Then

e'^(t) = ffi Wye-*' + (j>'(t)}
dt = -&- e^~^' + fe

r

'<p'{t) dt.

r

Hence f(/)
= EZ + e r

fe
r

<p' (t) dt,

a

r '

a
7r

and the accelerative force of the resistance is

ami
f /37 v . ~£ r

a

T^w*\j* i
"

I
s '

e~ yt + e r

J e
r

(p (f) dt
— ke

£-*
If 7 be an exceedingly large quantity, in which case the sphere's

velocity after a very short interval is m {/3 + <p(t)},
the above result

becomes for all values of t which are not exceedingly small,
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e '

fe
r

<p'(t)dt,

and therefore the same as if the velocity were simply m<j>(t). Hence

a small sphere moving with a uniform velocity suffers no resistance;

and if its velocity be partly uniform and partly variable, the resistance

depends only on the variable part.

9. I come now to the consideration of the motion of a small sphere

supposing it acted upon by the pressure resulting from a series of

vibrations of the fluid, no other force acting. I suppose the vibrations

to be propagated with the uniform velocity a in the positive direction,

and the velocity of the vibrating fluid to be m<p(t) at the origin of

x -at any time t. At the same time t at any distance x from the

origin the velocity is
<p [t ) , being that which was at the origin

at the time it
)

. Suppose the centre of the sphere to be at the

origin of x
'

when t = 0, and to be at the distance x at the time t.

For the sake of simplicity I shall first assume the vibrations of the

fluid to be unaccompanied by change of density, which is a supppsable

case if we conceive all the parts of the fluid to move in the direction

of x at the same time with the same velocity. Now it is clear that

the action of the fluid on the sphere depends only on the difference

of their velocities. And the mathematical conditions of the question

will remain the same if we suppose the fluid to be at rest and the

sphere to have the velocity
—

\mfpit )

— -tt
}

• Calling this velocity

—
mx(t), and f the resulting accelerative force of the sphere, we shall

have by what was proved in Art. 5,

- ami \ -2* r ii -al\J= ~-\e T

Je'^{t)dt-ke ').

Let us now suppose the fluid vibrations to be accompanied by change

of density. If pi be the density where the velocity is m<p It
J

, it

-<t>(t-
x
\ The

is well known that we have the exact relation pi
= e a N

«/'
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velocity of the fluid being supposed to remain the same as before, the

effect of change of density will be taken into account by merely sub-

stituting p^ for 5 in the equation above. By this substitution let f
become f. Then

f = ^le^
t) +

^{e^ fe-^[t)dt-ke^}.

Again, the sphere will be acted upon by an additional accelerative force

arising from the circumstance that the density, and consequently the

pressure, varies from one point to another of its surface at a given

time, on account of the variation of density of the fluid in vibration

with the distance x from the origin at a given time. The pressure

at all points of a plane perpendicular to the direction of x will evidently
be the same. Hence, if c?f(x) represent the pressure at any distance x,

corresponding to the position of the centre of the sphere, it may readily

d f(x)
be shewn that the accelerative force in question is — a23—H^-^, terms

involving r2

being omitted. Now

f(x) = e
a '

, and —^M =
: • « "' * <t> [t .* ax a2

\ a)

Hence, calling this force f", we have,

As the sphere is solicited by no other forces than those just considered,

d2xf +/" = -Tj ; and consequently,

at

Now fe' x'tydt = «' '-
{x'(t)

- -
X"(t)}> nearly:U fJh

and e
a = e"

v a/ a<" = e ffl «-x I —
1

, nearly. Hence
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Consequently, by integrating to the second approximation,

c-a.e a** = aU" y "' + aSe a
x O + ***** + c x(0-a ™ x a

When #, £, and -7- each = 0,

and to the same degree of approximation k = -
x'(0)- Hence c = a + 2a&.

Therefore, when t is not exceedingly small,

a + 2«S - ae-™ = aiG-* (#
'S + e-

x,
°) -— *'(*),

and expanding the exponentials to terms containing m2
,

dx dx*

dl
~
lad? '"*{+{'- a)

+
XWI

+
**{+('- a)

+ X(0l)-— X(0-

Hence -7- = x
<p

(t
)

, for a first approximation.

Therefore x «) - f («
-

S) (l
-
jMj)

- #
(l
-

2).£| .

to the same approximation.

^»'W-»(«-S-m-(»-a)->('-S)-T^'-»-

*- Bf'* --*(«-3*= [^F3lM1+ S^)1]

mrZ 1 — J" , /. x\

And finally,

dl
=
TTy * V

~
a)

~
«(!+*)

+ V
-

a)
+

£(T73j
' * V

'
a)

'

I shall content myself in the present communication with having
obtained this equation, which, as far as I am aware, is the first instance

of a solution of a problem of this kind. On a future occasion I propose
Vol. VII. Past III. Qq
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making some applications of it. I shall here only remark, in confirmation

of the result, that if U
J
=1, that is, if the fluid move with the

.- , .. dx 2mh m2
^ , ^, .

uniform velocity m, -j-
— z— * H

7^
—

-rt ; and supposing the density

of the sphere to be the same as that of the fluid in motion, and con-

-- dx
sequently 8 = e "

, it will be found that —r- = m, neglecting ms
,

&c.

This manifestly should be the case. If

2tt

*
[ a)

= Sin ¥ *
"

)'

dx
the last term of the expression for «*- will be partly constant and partly

variable, and it is plain from equation (12) that the accelerative force

is the same as if the constant part did not exist. If
<p'

(t
] =0,

whenever
<p (t

J
=0, the sphere and the fluid will be stationary at

the same instants.

J. CHALLIS.

Cambridge Observatory,

March 3, 1841.
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ADDITIONAL NOTE.

The theoretical resistance to the motion of a ball-pendulum in the

air, obtained in the foregoing Essay, differs from that found by Poisson

in Vol. xi. of the Memoirs of the Paris Academy of Sciences and in the

Connaissance des Terns for 1834, and by M. Plana in a Memoir on the

Motion of a Pendulum in a Resisting Medium, published at Turin in 1835.

I propose therefore to add here as distinct a statement as possible of the

reason of this difference.

According to the solution of these two eminent mathematicians, the

motion of the fluid in contact with the oscillating sphere, is partly along

its surface and partly directed to or from the centre : on the contrary,

in the solution I have given, the motion at each instant is wholly di-

rected to or from the centre. The following reasoning appears to prove

the correctness of the latter view.

It is well known that the equation udx + vdy + wdz = 0, is the

differential equation of a surface which cuts at right angles the directions

of the motions of the particles through which it passes, if the left hand

side of the equation be integrable per se. And if it be integrable after

being multiplied by a factor N, the equation N(udx + vdy + wd%) = 0,

is equally the differential equation of such a surface, but more general

in its application. Let therefore

N (udx + vdy + wdz) — d.
(p (x, y, z, t).

Then integrating, and supposing the arbitrary function of the time to

be included in
cp,

we shall have (x, y, z, t)
— 0. The surfaces of which

this is the general equation, for the sake of shortness I shall call surfaces

of displacement. If the time t changes to t + dt, the co-ordinates x, y, z,

of each particle at a surface of displacement change to x + udt, y + vdt,

z + wdt, and are ultimately the co-ordinates of the surface of displace-

ment in a new position indefinitely near the former. Hence

<p (x + udt, y + vdt, z + wdt, t + dt) = 0,

Q Q2
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or, putting (p
for

<p (s, y, as, t),

<t> + -*£ . udt + -S- . vdt + ~-
. wdt + -T7 dt = 0.r dx dy dz dt

Now = 0, -j^ = Nu, -j- = Nv, -S = Nw. Hencer dx dy dz

N(u* + v° + w2
) + S = 0.

Or, if u* + r" + lb" =V\ N = - ^-f

.

Let, for example, the surface of displacement be that of a sphere of

given radius moving with a given velocity Vt
in the direction of the axis

of %. Then if R be the radius of the sphere, and a, b, c, be the co-

ordinates of its centre,

(*, y, %, f)
= {x - a)' + (y- bf + (u

- cf - R\

rr dc d(b ', . dc „ rr , .v =
d-r di

= -^% - c^r-^ v̂ -^
and the normal velocity Vis equal to Vr _ . ConsequentlyN=

j^-.
.

Si r
t \%

— C)

It therefore appears that the surface of an oscillating sphere may be a surface

of displacement, and that the factor JV varies as
g » as I have supposed

in Art. 5. It also appears that the error of Poisson's solution consists in his

employing an equation depending on the supposition that udx + vdy + wdz
is of itself an exact differential ; a supposition which, as we have seen, is

not of sufficient generality. Indeed it would not be difficult to shew that

this condition is fulfilled only when the surfaces of displacement coincide

with surfaces of equal pressure during the whole of the motion, and when

in consequence the motion of each particle of the fluid is rectilinear. The
differential equations of fluid motion in their most general form have never

yet been obtained.

The above considerations lead to a very simple solution of the problem

of the resistance of the air to an oscillating sphere. For supposing the

motion of the sphere to be impressed on the sphere and on the air in the
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direction contrary to that of the sphere's motion, the sphere will be reduced

to rest, and the velocity of the fluid along the surface of the sphere, from

what is proved above, will be V
t
sin 0. Hence by a known Theorem of

Hydro-dynamics,

p'Bde*\ dt j

_u '

and as jo
=

a*f>,
and

-jj-
- V

t
sin 0, if we put m <p (t) for V

t ,
it follows

that,

^^+mB<p'(t)
sin 9 +

\<f> (t)}* cos 6 sin = 0;

(2

whence, by integration,

tf Nap. log. P
-

R<p' (t) cos 9 ~1JL cos2 = a function of t.

This equation agrees in its ultimate application with (10) of Art. 5,

and consequently leads to the same result.

Cambridge Observatory,
Dec. 13, 1841.





XX. Description of an Extinct Lacertian Reptile, Rhynchosaurus arti-

ceps, Owen, of which the Bones and Foot-prints characterize the

Upper New Red Sandstone at Grinsill, near Shrewsbury. By
Richard Owen, F. R. S., G. S. &f., Hunterian Professor in the

Royal College of Surgeons.

[Read April 11, 1842.]

The existence of a small four-footed animal, at the period of the depo-

sition of the New Red Sandstone near Shrewsbury, was announced by
Dr. Ogier Ward of that city, at the meeting of the British Association at

Birmingham ; the evidence then brought forward consisting of foot-prints

only. These Ichnolites most nearly resembled those figured in the Memoir
on the New Red Sandstone of Warwickshire, by Messrs. Murchison

and Strickland*, but differed in giving more distinct indications of the

terminal claws, and less distinct impressions of the connecting web : the

innermost toe is more diminutive, and there is an impression, always at

a definite distance from the fore-toes, like a hind-toe pointing backwards,

and which seems to have only touched the ground by its point, as in some

wading birds : reminding one of the form of some of the Ichnolites dis-

covered by Dr. Hitchcock, in the New Red Sandstone at Connecticut,

which have been referred to the class of birds.

Any evidence of a warm-blooded and quick-breathing class of animals

at so remote a period as the New Red Sandstone epoch requires to be

very closely sifted, and the chance of obtaining any analogical facts,

bearing upon the explanation of the * Ornithicnites' of Professor Hitchcock,

induced me to spare no exertions to obtain further insight into the

problematical creature of the Grinsill quarries.

*
Geological Transactions, Second Series, Vol. V. pi. xxviii. .
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Through the kind and zealous attention of Dr. Ward to the quarrying

operations in his neighbourhood, various fossils were from time to time

secured and transmitted to me, which at length enabled me to form

a clear opinion of the nature and affinities of the animal in question.

I say of the animal that impressed the sands with its feet, because, with

respect to the bones, Dr. Ward observes in his letter accompanying them :

" As they have always been found nearly in the same bed as that impressed

by the footsteps I have described, I am induced to believe that these are

the bones of the same animal:" and in this opinion, from the correspondence

of size between the bones and foot-prints, and from the circumstance

of the absence of other observed bones or foot-prints in the same quarry,

I entirely coincide.

The vertebrae, to which my attention was first directed, proved the

species to belong to the Lacertine or lower division of the great Saurian

group of reptiles*. These bones will be first described.

Vertebree.—Both surfaces of the centrum are concave and are deeper

than in the biconcave vertebrae of the extinct Crocodilians ; the texture

of the centrum is compact throughout. In the dorsal series the two

lateral surfaces join the under surface at a nearly right angle, the transverse

section presenting a subquadrate form, with the angles rounded off: the

under surface and sides are regularly concave longitudinally.

The neural arch is anchylosed with the centrum, without trace of suture,

as in most Lizards ; it immediately expands and sends outwards from

* An extended survey of the modifications of this class of Vertebrata from their first appear-

ance on the Earth's surface to the present time, is necessarily attended with different views of

their classification than can be derived from an acquaintance, however close, with existing

species only. I propose to divide the Reptilia into eight orders: viz. Dinosauria, Enalio-

sauria, Crocodilia, Lacertili a, Pterosauria, Chelonia, OPHiDiA.and Batrachia. They
are here enumerated in the descending scale of organization. The Saurian division was repre-

sented of old by reptiles manifesting the crocodilian grade of structure, under a rich variety of

modifications, constituting, besides the typical and still represented groups, two other orders,

now wholly extinct ; it has since subsided into a swarm of small Lacertians, headed by so few

examples of the Crocodilian or Loricate species, that it is no marvel such relics of a once pre-

dominating tribe should have found a humble place in Linne's System of Nature, as co-ordinate

members of the genus Lacerta.
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each angle of its base a broad triangular process with a flat articular

surface; the two anterior surfaces look directly upwards, the posterior

ones downwards ; the latter are continued backwards beyond the posterior

extremity of the centrum; the tubercle for the simple articulation of

the rib is situated immediately beneath the anterior oblique process. So

far the vertebra? of the Rhynchosaurun, always excepting their biconcave

structure, resemble the vertebra of most recent lizards. In the modifica-

tion next to be noticed, they show one of the A*ertebral characters of the

Dinosauria*. A broad obtuse ridge rises from the upper convex surface

of the posterior articular process, and arches forwards along the neur-

apophysisf above the anterior articular process, and gradually subsides an-

terior to its base: the upper part of this arched angular ridge forms, with

that of the opposite side, a platform, from the middle line of which the

spinous process is developed. This structure is not present in existing

lizards; the sides of the neural arch in their vertebras immediately

converge from the articular processes to the base of the spine, without

the intervention of an angular ridge formed by the side of a raised

platform. The base of the spinous process in the Rhynchosaur is broadest

behind, and commences there by two roots or ridges, one from the upper
and back part of each posterior articular process : they meet at the

posterior part of the summit of the neural arch, whence the spinous

process is continued upwards as a simple plate of bone, its base extend-

ing forwards along about two thirds of the length of the platform,

which then again divides into two ridges which diverge from each other

in slight curves to the anterior and external angles of the neurapo

physes. The interspace of the diverging anterior crura of the base of

the spine is occupied by a triangular fossa, not continued into the sub-

stance of the spine; this fossa is bounded below by a horizontal plate

of bone extended over the anterior part of the spinal canal, and ter-

minated by a convex outline. The anterior margin of the spinous

* The characters of this extinct Order of Reptiles are given in the Report of the British

Association, 1841, p. 102.

t The vertebral nomenclature, which I have been compelled to invent -for the requisite

clearness and brevity of description of these most complicated and most common of Reptilian

fossils, is explained in the Geological Transactions, Vol. V, pt. iii, Second Series, p. 518.

Vol. VII. Part III. Rg
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process is thin and trenchant ; the height of the spine does not exceed

the antero-posterior diameter of its base ; it is obliquely rounded off. The

spinal canal sinks into the middle part of the centrum, and rises to

the base of the spine, so that its vertical diameter is twice as great at

the middle as at the two extremities : this modification resembles, in

a certain degree, that of the vertebra? of the Palceosmirus from the

Bristol conglomerate*. The following are dimensions of the most perfect

of the dorsal vertebra? of the Rhynchosaurus :
—

Lines.

The length of the centrum
5-£-

Height of the articular end 3

Breadth of the articular end
2-f- ^

From the lower margin of the posterior extremity of the cen-

trum to the posterior part of the base of the spine 5

From the lower margin of the posterior extremity of the cen-

trum to the summit of the spine 9

Antero-posterior extent of base of spine 4

Breadth of the neural arch, from the outer margin of one

anterior articular process to that of the opposite side
8-J-

Breadth of the neural arch at the interspace between the ante-

rior and posterior articular processes 4

Breadth of the neural arch across the middle of the spinous

platform 2

Skull.—The most complete specimen yet obtained of this instructive

part of the skeleton of the Rhynchomurus is imbedded in a portion of

the coarse-grained sandstone from the Grinsill quarries. The lower jaw
is in its natural position, as when the mouth is shut, showing that the

parts had not been dislocated when they became imbedded in the sand.

The skull presents the form of a four-sided pyramid, compressed

laterally, and with the upper facet arching down in a graceful curve to

the apex, which is formed by the termination of the muzzle.

The very narrow cranium, the wide temporal fossa on each side,

bounded behind by the bifurcations of the parietal and the mastoid, and

laterally by a strong compressed zygoma, with a long tympanic pedicle

descending vertically from the point of union of the transverse and

*
Geological Transactions, Second Series, Vol. V. p. 349, pi. xxix.
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zygomatic arches, and terminating in a convex pulley for the articular

concavity of the lower jaw,—the large and complete orbits, and the

short, compressed, and bent-down maxilla?,—all combine to prove the

fossil to belong to the Lacertine division of the Saurian Order.

The lateral compression and depth of the skull, the great vertical

extent of the superior maxillary bone, the small relative size of the

temporal spaces, the great depth of the lower jaw, prove that it does

not belong to a reptile of the Batrachian Order. The shortness of the

muzzle, and its compressed form, equally remove it from the Crocodilians.

No Chelonian has the tympanic pedicle so long, so narrow, or so freely

suspended to the posterior and lateral angles of the cranium.

The general aspect of the skull differs, indeed, from that of existing

Lacertians, and singularly resembles that of the bird or turtle, and the

resemblance is increased by the apparent absence of teeth. The inter-

maxillary bones, moreover, are double, as in the Chelonia, and also

symmetrical, not united by a median ascending process ; but, with this

exception, all the more essential characters of the skull are those of

the Lizard.

Of the proper parietes of the cerebral cavity, the portion formed

by the parietal and frontal bones is exposed. The parietal is traversed

by a thin, but high median crest longitudinally : the sides are convex,
and the breadth of the bone diminishes towards the occiput : here it

divides into two branches, which pass outwards, more transversely than

in existing Lizards. There is no perforation either in the parietal

bone, or in the coronal suture. This suture is transverse. At the an-

terior part of the parietal crest two lines diverge from each other at

a right angle to the upper part of the orbit, and separate the median

from the post-frontals ;
a nearly transverse suture divides the fore-part

of the parietal from the post-frontals. The median frontal bone is single,

like that of the new-world Thorictes {Thorictes, Tejus) and Iguanas, not

divided, as in the Varanians. It expands slightly as it advances towards

the fore-part of the orbits, the oblique lines dividing the median frontal

from the post-frontals, and the supra-orbitary ridges are raised, so that

the interspace is slightly concave
;

and the surface is also broken by
BBS
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irregular elevations and depressions. The post-frontal is divided by a

nearly transverse suture. This bone completes the upper and outer part

of the orbit by a thin well-defined curved plate; an irregular blunt

ridge descends in a nearly vertical direction behind this plate, and

then the posterior frontal is continued backwards in the form of a long

compressed plate gradually terminating in a point, which overlaps the

zygomatic bone. This forms the medium of union between the long

posterior frontal and the parietal fork. The posterior frontal is divided

by a suture, as in the Iguana?; the anterior division forms a projecting

curved plate at the upper and outer part of the circumference of the

orbit, and prolongs forward the rim of that cavity beyond the plane of

the head.

The tympanic bone is bent like the Italic f, and is slightly expanded

transversely at its distal extremity : its posterior surface is exposed in

the present fossil, showing it to be convex and rounded, and continued

externally in the form of a thin plate, which is concave posteriorly.

The thick convex stem divides near the lower end into two ridges,

which diverge, like the condyles of a humerus, and intercept the trochlea

on which the concave articulation of the lower jaw plays. The tympanic
trochlea is convex from behind forwards, concave from side to side.

The orbit is large, nearly circular in form, and its bony frame is

complete; this is formed above by the median, anterior and posterior

frontals, before by the anterior frontal and lachrymal, below by the

malar, and behind by the malar and posterior frontal.

The malar bone, as in most lizards, is long, slender, and bent upon
itself, but its external surface is unusually concave, the orbital plate

projecting outwards, like the corresponding rim formed by the frontal

bone. The anterior or horizontal branch of the malar gradually tapers to

a point, which is wedged in between the lachrymal and superior max-

illary ; the posterior branch ascends at nearly a right angle and is

applied obliquely to the posterior part of the descending process of

the posterior frontal : at the angle between the two portions of the

malar a process is continued backwards for about half an inch, but its

extremity is broken off.



PROFESSOR OWEN, ON THE RHYNCHOSAURUS. 361

The lachrymal bone presents the same relative size and position as

in the Thorictes, Lacerta, and most Lizards; a tubercle rises from

about the middle of its external surface.

The superior maxillary is a broad vertical triangular plate of bone,

with a smooth external surface : the alveolar border projects externally
like a ridge, above which the bone is slightly concave : this ridge

appears to be slightly dentated, and overlaps the corresponding alveolar

border of the lower jaw. The posterior superior margin of the max-

illary bone is slightly concave, and joins the malar and lachrymal bones,

and a small part of the prefrontal : the anterior superior margin joins

the upper half of the elongated intermaxillary bone, which divides it from

the nasal bone and the external nostril: the lower side or base of

the triangle, which forms the alveolar border, is convex.

The most singular character of the cranium of the present fossil

Reptile is afforded by the intermaxillary bones. These, in their length
and regular downward curvature, give to the fore-part of the skull

the physiognomy of that of an accipitrine bird; but they differ es-

sentially from both those of the bird and lizard, in being on each

side distinct throughout their whole length, and in gradually diminish-

ing to their inferior or rostral extremity, which is not expanded or

continued laterally to form any part of the alveolar border of the

upper jaw. Each intermaxillary bone is a slender subcompressed elon-

gated bone, bent so as to describe a quarter of a circle ; the upper
half is thinner, but rather broader, than the lower one, and is wedged
in between the superior maxillary, frontal, and nasal bones: the lower

half, which is somewhat narrower, but thicker and subcylindrical, pro-

jects freely downwards beyond the superior maxillary hone ; and the deep
anterior extremity of the lower jaw is applied to the posterior surface

of these produced extremities of the two intermaxillaries when the

mouth is closed. The two intermaxillaries converge towards each other

from their posterior origins, and are in close contact with each other

where they form the singular curved and prominent beak.

The external nostril I presume to be situated between the upper

diverging ends of the intermaxillaries, but a fracture of the fossil at
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this part prevents the determination of the precise form of this aperture,

or the mode of termination of the nasal bones. These bones, if not

actually absent in the present fossil, as in most Chelonia, must have

been extremely small, as in the Chameleon.

The lower jaw is of considerable depth, and exceeds, as in most

Saurians, the length of the cranium. The articular cavity is deep and

wide: the angle of the jaw is broken off in the fossil directly behind

this cavity on the left side, but is continued backwards beyond it

for more than half an inch on the right side. The ramus gradually

expands in the vertical direction, and becomes thinner from side to

side, as it advances forwards, to about its middle part, which is just

behind the orbit, where it measures 11 lines in depth : it then be-

gins gradually to diminish vertically to the symphysis, which again

slightly increases to its termination, which is obliquely truncated, much

compressed laterally, and applied against the deflected extremities of

the intermaxillaries. The posterior half of the maxillary ramus is slightly

convex externally ; the anterior narrower part slightly concave : the

superior margin describes a slight but graceful sigmoid curve, convex

posteriorly, and concave anteriorly, where it is adapted to the convex

alveolar border of the upper maxillary bone, to the inner side of which

it is closely applied. The alveolar border forms an external, convex,

projecting ridge, analogous to that of the upper jaw.

The composite structure of the lower jaw is very clearly displayed

in the fossil. The articular piece is short, but is continued forwards

as a slender process below the angular piece e, as in the Varanus. The an-

gular piece is relatively larger than in Varanus, and presents nearly

the same proportions as in Thorictes. The supra-angular is longer, and

occupies the proportion of the jaw formed by the supra-angular and

coronoid elements in Thorictes and other Lizards. The opercular element

extends farther upon the outside of the jaw from its lower margin

than in the existing Lizards; Thorictes, again, in this respect, coming

nearest to Rhynchosaurus. The dentary element constitutes the rest of

the outer side of the ramus, but not the slightest trace of teeth is

discernible. The fossil seems to have been preserved with the mouth
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naturally closed, and the upper and lower jaws are in close contact.

In this state they must originally have been buried in the sandy

matrix, which afterwards hardened around them : and since true Lizards,

owing to the uninterrupted succession of their teeth, do not become

edentulous by age, we must conclude that the state in which the

Rhynchosaurus was buried, with its lower jaw in undisturbed articu-

lation with the head, accorded with its natural state while living, so

far as the less perishable parts of its masticatory organs were con-

cerned. Nevertheless, since a view of the inner side of the alveolar

border has not been obtained, we cannot be assured of the edentulous

character of this very singular Saurian ;
for in the Agamce and Cha-

meleons the dental system, seen only from the outside of the jaws,

appears to be represented by mere dentations of the alveolar border,

and the anchylosed bases of the teeth, the crowns of which really form

the dentations, are recognizable only by an inside view.

But the indications of the dental system are indisputably much less

obvious in the Rhynchosaurus than in these existing Lacertians : the

dentations of the upper jaw are absolutely feebler than in the Cha-

meleon, and no trace of them can be detected in the lower jaw. The
absence of the coronoid process, which is conspicuously developed in

all Lizards, corresponds with the unarmed state of the jaw ; and the

resemblance of the Rhynchosaurus in this respect to the Chelonice, and

to Chelys ferox, indicates that the correspondence actually extended to the

edentulous condition of the jaws. The resemblance of the mouth to

the compressed beak of certain sea-birds, the bending down of the

curved and elongated intermaxillaries, so as to be opposed to the deep

symphysial extremity of the lower jaw, are further indications that the

ancient Rhynchosaur may have had its jaws incased by a bony sheath,

as in Birds and Turtles.

I proceed now briefly to notice the other portions of the skeleton,

which, from their size, texture, and community of stratum and locality,

are with much probability referable to the Rhynchosaurus.

Considerable portions of two rami of two distinct lower jaws, in

portions of sandstone from the Grinsill quarries, show the same struc-
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ture as that of the jaw in the cranium above described : the thick

edentulous alveolar border is bounded below on the outside by the

longitudinal channel : the lower border of the ramus is thick and

smoothly rounded, it is somewhat abruptly constricted immediately
behind the deflected extremity or symphysis. The structure of the

bone is very compact ; the fractured end demonstrates the large cavity,

common in Reptiles, which is included between the opercular and den-

tary pieces.

One piece of fine-grained sandstone contains a considerable proportion
of four of the dorsal vertebrae in a connected chain, which measures

1 inch 10 lines.

Near this chain of four and a smaller part of a fifth vertebra?

there are portions of four ribs. These have a simple, not a bifurcated

head ; they are subcompressed, pretty uniformly curved, and grooved

longitudinally on both sides ; the longest portion of rib measures two

inches, following the curvature.

The same fragment of sandstone contains three flat bones, which

offer several striking modifications, whether they be compared with the

constituents of an os innominatum or of the scapular arch. The most

entire of the three bones* has a thick articular end, a long, broad,

and thin plate, forming the body of the bone ; and a moderately long
trihedral process given off from the convex margin near the articular

end. In these characters the comparative anatomist conversant with the

modifications of the skeleton in recent and extinct Saurians will recog-

nise a resemblance to the scapula of the Iguanodon and Hylaeosaur, in

a minor degree to the ischium of the Crocodile, and somewhat more

remotely to the pubis of the Tortoise. The trihedral process, in the

second comparison, would match the anterior pubic process of the Cro-

codile's ischium, but the entire bone would differ from that of the

Crocodile in the slenderness of the pubic process, in the greater breadth

and less length of the body of the bone, and in its extreme thinness ;

it increases in thickness, however, as in the Crocodile's ischium, to-

wards the articular end. The correspondence of the trihedral process
* Plate vi, fig. 8.
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of the bone in question with the long spinous process of the Chelonian

pubis, is less close than the one just discussed. If the present well-

marked bone of the Rhynchosaur be regarded as a scapula, it is to

that bone in the Dinosauria that it offers most resemblance; and the

prismatic process would then correspond with the one sent off from the

anterior part of the glenoid articular surface in the scapula of the

Hykeosaur and Iguanodon. The concavity at the neck of the bone,

at the side opposite that from which the process extends, also gives
it a nearer resemblance to the Dinosaurian scapula than to the Croco-

dilian ischium : it differs from the scapula of the Crocodile in having
the posterior margin beyond the neck straight instead of convex ; the

corresponding margin in the ischium being concave. The blade of the

bone, considered as scapula, is broader and shorter than in either the Di-

nosaurs or Crocodiles : its outer surface is slightly convex. Supposing
the scapula to be placed vertically upon the thicker articular end, the

prismatic process is directed forwards and downwards. There are a few

pits or inequalities near the neck or thick articular margin in the

present fossil. The outer surface of the plate is marked with extremely
fine striae, radiating from the neck.

In. Lines.

Length of the bone 1 . 8

Breadth of the neck . 5i-

Breadth of the base 1 .

Length of the trihedral process . 8

Coracoid*.—The remains of a thin and broad plate of bone, attached

by a short neck to an apparently articular thickened head or process, might
be compared to a coracoid, since it resembles, so far as it is preserved,
the coracoid of Lizards, more than it does any other known bone ; there

is not, however, the perforation near the articular surface. The breadth

of the neck is 6 lines
; that of the body of the bone which remains

13 lines ; the length or diameter at right angles to the above is 10 lines.

The bone is thinned off to an edge, which is gently convex.

Humerus-^.—A third bone, imbedded in the^same piece of sandstone

at a little distance from the preceding, is expanded at both extremities,
* Plate vi, fig. 9, a. + Plate vi, fig. 9, c.

Vol. VII. Paet III. Ss
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contracted and twisted in the middle. One of the expanded extremities,

apparently the proximal end, is nearly entire: it terminates by an irre-

gular convex border not thinned off to an edge, but adapted to the

formation of a joint, and to the attachment of cartilage. The exposed

surface of the expanded head is concave from side to side, somewhat

resembling the expanded and bent pubic plate in Lizards. The opposite

extremity is broken across : it shows the commencement of a slight longi-

tudinal ridge near its middle part. This bone bears most resemblance

to a humerus ;
but I am at present unable to determine it unequivocally.

If compared with the left pubis of Lacertians, the entire and bent

extremity corresponds with the median portion of that bone; but the

middle part or stem is much longer in the fossil; and the broken end

which would agree with the acetabular end of the pubis, is too thin to

have entered into the formation of such a cavity in the fossil : it likewise

wants the perforation which characterizes the pubis in Lizards. The same

thinness and imperforate condition of the fractured end oppose the com-

parison of the present bone with the coracoid of the Crocodile:

In. Lines.

Length of this bone as far as complete 1 . 9

Breadth in the middle . 3

Breadth of entire expanded extremity . 10

In the slab containing the above-described bones there are other

fragments of bone; but too small and imperfect for profitable description.

Those of which I have endeavoured to make the form and analogies in-

telligible, though evidently peculiar, as might be expected in a Saurian

with so strange a head, and perhaps with a hind toe directed backwards

as in Birds, may be regarded as most probably constituents of a strong

and well-developed pectoral arch, and a humerus : and they indubitably

indicate a mechanism for locomotion on land, which would agree with

that of the animal that has left the impressions of its footsteps upon the

same sandstone.

Radius and Ulna.—Another piece of coarse-grained sandstone from

the same quarry contains a series of seven or eight vertebrae, in a very

fragmentary state ; also two or three ribs, rather more slender and not
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so distinctly grooved as in the fine-grained slab, and the proximal extre-

mities of two long bones, which most resemble a lizard's radius and

idna. The shaft of the radius is more slender than that of the ulna:

one side is flat, the other convex : it expands and assumes a sub-

trihedral figure, by the development of a slight longitudinal ridge : its

proximal end is compressed and more suddenly expanded : its breadth

is 2| lines ; that of the shaft of the bone is 1 line. The impression, partly

broken away in the stone, indicates the greater expansion of the distal

end of this bone, with a length of 1 inch 3 lines. The proximal end of

the ulna has a distinct trihedral figure, and the expanded extremity is

produced backwards, so as to indicate the olecranon : the breadth of the

head is 4 lines ; that of the middle of the shaft is 1\ lines. There is a

portion of a broad and flat bone in this piece which may have belonged

to the scapular arch.

Ilium.—In another piece of stone, with the other portion of the same

chain of five vertebras, there is a broad flat bone, apparently terminating

in a long narrow process at one end, which may be an ilium : its length

is indicated to be at least 1 inch 7 lines.

Femora.—A thin piece of burr, or coarse-grained sandstone, contains

the articular end of a broad and flat bone, in which the raised oblong
surface of the joint is divided by a smooth channel, and may be compared
with the cotyloid portion of the ilium : the same piece of stone contains

the shafts of two long bones, most probably femora. The length of the

most perfect of these is two inches, and this does not include the distal

end : the diameter of the middle of the 6haft is %\ lines : the surface of

the preserved middle part shows the shaft to have been somewha.t angular :

the compact outer wall of the bone is about a quarter of a line thick :

a large medullary cavity extends the whole length of the shaft, agreeing
with the indications of terrestrial habits yielded by the bones before de-

scribed : the extremities of the femora are spongy, but much decomposed
and stained with iron-mould.

There are few genera of extinct reptiles of which it is more desirable

to obtain the means of determining the precise modifications of the loco-

motive extremities than the Rhynchosaurus. The fortunate preservation
s s 2
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of the skull has brought to light modifications of the Lacertine structure

leading towards Chelonia and Birds, which were before unknown : the

vertebras, likewise, exhibit very interesting deviations from the Lacertian

type. The entire reconstruction of the skeleton of the Rhynchosaurus

may be ultimately accomplished, if the collection and preservation of

the fossils of the Grinsill quarries be continued with the same activity

and care, as have already produced so important an accession to Palaeon-

tology through the well-directed zeal of Dr. Ogier Ward, and other

members of the Literary and Scientific Association at Shrewsbury.

DESCRIPTION OF THE PLATES.

Plate V.

Skull of the Rhynchosaurus articeps.

Fig. 1. Side view.

2. Three-quarters' view.

3. Upper view.

4. Front view.

5. Back view.

All the figures are of the natural size, and the same parts are marked with the

same letters in each figure.

Cranium and Upper Jaw.

a Intermaxillaries.

b Nasal,

c Frontal.

d Maxillary,

e Anterior frontal.

/ Lachrymal.

g Malar.

i Posterior frontal.

i Orbital division of ditto.
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m Mastoid.

I Temporal.

n Parietal.

o Supra-occipital.

q Bifurcated process of Parietal.

r Tympanic.

Lower Jaw.

a Dentary piece.

b Opercular ditto.

d Articular ditto.

e Angular ditto.

/ Coronoid ditto.

Platk VI.

Vertebra and other Bones of the Rhynchosaurvs artjceps.

Fig. 1. Chain of five dorsal vertebrae, vertically bisected, shewing the concave
articular surfaces, and the ventricose spinal canal.

2. Opposite and more mutilated side of the same chain, with a portion of

the ilium.

3. Upper view of an entire dorsal vertebra.

4. Upper view of
fig. 1, shewing the grooved ribs.

5. A chain of caudal vertebra?.

6. A portion of the left ramus of the lower jaw.

7. A chain of vertebra?, with ribs ; fragment of Scapula, Radius and Ulna.

8. Right scapula.

8. a. Corresponding bone of the Hylasosaurus much reduced, shewing a

similar process from the acromion.

9. Part of the coracoid a, the clavicle, and humerus b.

10. Part of the ilium, and o'f both femora.

All the parts of the Rhynchosaur are of the natural size.





XXI. A general Investigation of the Differential Equations applicable
to the Motion of Fluids. By the Rev. James Challis, M.A.,
Plumian Professor of Astronomy and Experimental Philosophy in

the University of Cambridge.

[Read April 11, 1842.]

1. Let p be the pressure at any point of a mass of fluid in

motion, the co-ordinates of which referred to three rectangular planes
are x, y, «, at a time / reckoned from a given epoch; let p be the

density at the same point and at the same time, and suppose p and

P to be always related to each other by the equation p = ofp. Let

X, Y, Z, be the forces impressed in the directions of the three rect-

angular co-ordinates on the fluid particle which is at the point xy%
at the time t, and let u, v, w, be the components of the velocity

of the particle in the same directions. Then the two fundamental equa-
tions of Hydro-dynamics are, as is well known,

dp d.pu d.pv d.pw _
dt dx dy d%

~
^ '

And we have also,

dx dy d%U=
dt>

V=
di'

W
=di-

It will be proper to explain here, that in the above equations,

and in the subsequent investigation, the following notation is, adopted
for the sake of perspicuity. The differential coefficients of the quan-
tities p, p, u, v, w, are partial when they are not in brackets

; when
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in brackets they are complete, the variation being with respect both to

the time and the three co-ordinates. A differential, as {dp), is put
in brackets to indicate that the variation is with respect to the three

co-ordinates, the time being given.

By substituting P for a? Nap. log p, and (dQ) for Xdx + Ydy + Zdx,

regarding X, Y, Z, as functions both of t and the co-ordinates, the

equation (2) will be changed to the following:

w-w» + (£)*&)* + (&*-. «o. .

2. That the above equations may be available for application to

proposed instances of motion, it is required to derive from them a

single partial differential equation in which the principal variable is

a function of x, y, z, and t. This has been long done on the par-

ticular hypothesis that udx + vdy + wdz is integrable per se. I pro-

pose to give some consideration to this case, preparatory to the more

general investigation that will follow.

On the above hypothesis we may assume
<p

to be a function of

x, y, z and t, such that,

(d(j>)
= udx + vdy + wdz.

Consequently,

_ d(p _ d(p dip

dx' dy' dz
'

3. If the fluid be incompressible p is constant, -j-
= 0, and equa-

tion (1) becomes,

du dv dw _
dx dy dz

Hence for this case the required partial differential equation is evidently,

dl± + *± + $£ = o.
dx" dy

2 dz2

I proceed to make a transformation of this equation which will

be serviceable in the subsequent calculations.
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First, it will appear by the following reasoning that

udx + vdy + wdz = 0,

is the differential equation of a surface which at a given instance cuts

at right angle the directions of motion of the particles through which

it passes*. Let qPp (in the figure) represent such

a surface, which, for brevity, we will call a surface

of displacement. Let P be a point in it, the co-

ordinates of which are x, y, z, and let R be any
other point indefinitely near, whose co-ordinates are

x + dx, y + dy, z + dz. Draw PQ in the direction

of the motion at P, and therefore perpendicular to the surface qPp,
and draw RQ perpendicular to PQ. Let PR = ds, and PQ = dr. Also

let PR make the angles a, fi, y with the axes of co-ordinates, PQ
make the angles a, fi', y with the same axes, and PR make the angle
with PQ. Then if V be the velocity at P,

U — V COS a, V = V COS fi', w = V cos y,

also, dx = dn cos a, dy = ds cos /3, dz = ds cos y.

Hence,

udx + vdy f wdz = Vds (cos a cos d + cos /3 cos /3' + cos 7 cos 7')

= Vds cos 9 = Vdr.

Now if the variation of the co-ordinates be from P to a point p indefi-

nitely near on the surface of displacement, dr = 0, and therefore, since

V does not vanish,

udx + vdy + wdz = 0,

which it was required to prove.

Next, if r and r' be the principal radii of curvature at any point

of a surface, the differential equation of which is (d<p)
= 0, it may be

shewn by the processes of Analytical Geometry, that,

* See Mr. Earnshaw on Fluid Motion in the Cambridge Philosophical Transactions,

Vol. VI. Part 11. p. 204.

Vol. VII. Part III. Ti
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1 1 (dp dp dpy*
r
+ ?~ [dx7

+
~dtf

+
d¥)

'

[(d*<f> d2

(f> d*<f>\ (d<p* dp dp\ d-(f> dp d*<f> dp dUp dp
\\dx*

+
df

+
dz?) [dx1

"*
dy*

+
~dz2

) . dx^'dx
1
~
~df'df~ d7'dtf

dl

<p d(p dcp d*cp d<p d(p d*<p d<p d<p\
'

dx dy' dx' dy
' '

dx dz' dx' dz
'

dy dz' dy' dz)'

and if we assume the variation in (d
2

<p) to be from one point to another

in the line of motion, we shall have

dx = udt = ~-
dt,

dy = vdt = -~r- dt,y
dy

dz = wdt = -~ dt.
dz

Hence, by substituting these values of dx, dy, dz in the expression

for (d
2

<p) we obtain,

(<F$) (Pep dp d*jp dp d?<p dp
dt2

~
dx*dx*

+
If' df

+
dz*

'

dz2

d2

<p d<p d(p d?<p d<p dtp dl

<p d<p d(p
'

dx dy' dx' dy
'

dx dz
'

dx
'

dz
'

dy dz' dy
'

dz

Now if s be a line drawn at a given instant in the direction of the

motion of the particles through which it passes, and V be the velocity

at the point xyz of this line at the time t, V = —
, or dt = -= .

Hence W> * j* && But && - u *? + v *M + w &HenCe ' ~dF
~ V '

df
'

ds
~ U

'ds
+ V

'ds
+ W

ds'

and the variations dx, dy, dz, being supposed to take place from one

point to another in the line of motion,
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dx _ u dy _ v d% _ w
ds~~V' ds~~T' ds~T''

so that,^ = 4<>2 + »* + «0 =
F",

as V

rfs
2

efo rf*
2

c?y* da?

Hence by substituting in the foregoing value of —
|

—
T , we obtain,

1 + 1- llt^ +m + ^l) v*_v* d
JL\.

r r'
" r3\W +

<fy
2
^

dz*) ds]'

dV
p-fl 2.V-^ 4-

^ ^ ^ ^ - ^M ^v —
'

ds \r //
"
da? dy

2 dz'2
~
dx dy dz'

The transformed equation sought for is therefore,

£+'£**)-> «•

4. A similar transformation of equation (1) may readily be effected

when p is variable. For this equation may be put under the form,

dp dp dp dp du dv dw

pdt pdx pdy pdz dx dy dz

Hence putting ^r for u,
-j-

for v, and -=-? for w, we have

dp 1 (dP) du dv dw _

pdt of' dt dx dy dz

But it must be observed that the variation in {dP) is from one point
to another in the line of motion, on account of the above substitu-

tions for u, v, and w.

Hence ,
' = V , ,

= Vd*
.—jj-^. Also, as has already been proved,

dy

du dv dw _ dV „ (1 1\

dx dy dz
'

ds \r r'J
*

T T 2
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Therefore by substitution,

3J+-^+ *>(??)"-• <5 >-

I have obtained this equation in an entirely different manner in

the Transactions of the Cambridge Philosophical Society, Vol. V. Part u,

p. 196.

5. The equation (3), by substituting -^-
for u, -^ for v, and

-^ for w, is transformed into another, which by integration gives,
ax

Now since V = -¥- , -j- = t—ri- Hence -^ = f—rrds, tne m-

tegration being performed along the line s. The above equation thus

becomes,

<- «•+'/£*'+'?.?*«> (7) -

Hence, by differentiating with respect to t,

dP a1

dp dQ rd'F
' „dV „,A .

dt pdt dt J dt2 dt

and by differentiating with respect to s,

dP a%dP dQ dV T_ dV
rf,?

'

pds ds dt
'

ds

Consequently by substituting in equation (5) we obtain,

If now -3- be substituted for V, we have f—fjr
ds — J . TL rf* =

-7^-,

and the above equation becomes,
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The arbitrary function of the time F' (t) may be got rid of by

substituting <p' + fF{t)dt for
<p.

Again, by differentiating equation (8) with respect to s, an equation
of the same order as the preceding may be obtained, having V for

principal variable. The result (since dr = dr1 = ds) will be,

*Q dV dQ d»Q dT d*V dF>
dsdt ds' ds

+
ds2 { } d# df ds*

~rr d*V n dVdV a
dV i\ 1\ __/l in"

^ds-dt
- 2 -

ds-dt
+ a '

ds (r
+
?)

~ ra
{?

+
V*)

= °-- (10>

It should be observed that equations (9) and (10) are subject to the

same limitation as equation (5) in regard to the direction of the variation

of the co-ordinates.

6. All the preceding results have been obtained on the supposition

that udx + vdy + wdz is an exact differential. It will now be proper

to enquire to what circumstances of the motion this analytical condi-

tion refers. The following considerations will enable us to do this.

It has already been proved in Art. 3 that,

udx + vdy + wdz = Vdr\

in which dr may be considered the increment of a straight line drawn

in the direction of the motion, and dx, dy, d% are the corresponding
increments of the co-ordinates, the variations taking place at a given
instant from one point to another indefinitely near. Now Vdr is not

an exact differential unless V may be considered a function of the line

r ; that is, unless the variation of V from one point of space to another

at a given instant depends only on the change of position in the direc-

tion normal to the surface of displacement, the variation from one point
to another of the surface of displacement being zero. Therefore also

udx + vdy + wd% is not an exact differential unless dV= when the

co-ordinates vary at a given instant from one point to another of a given
surface of displacement.*

* See a direct proof of this Proposition in the ' Note' added to this Paper.
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If now equation (6) be differentiated with respect to space, the re-

sult is,

dP-dQ +d.^ + VdV=0;

and as this equation is subject to no limitation with respect to the direc-

tion of variation of co-ordinates, let us suppose the variation to be from

one point to another of a surface of displacement. Then from what

has been just shewn, dV = 0. Also

, dd> d2
<b j d'cb ,

d2
d> , du dv

t

dw .

d
'dt

=
tttdx +

dftt
d* + Mt d% =

Tt
d* +

Tt
d* +

-3i
dz

d.{udx + vdy + wdz) _=
di

'

because for a surface of displacement udx + vdy + wdz = 0. Conse-

quently dP — dQ = 0. It follows from this that when udx + vdy + wdz

is an exact differential, the surface of displacement coincides with a sur-

face for all points of which P - Q has the same value.

If Q = 0, that is, if there be no impressed forces, the surface of dis-

placement evidently coincides with a surface of equal pressure, and the

motion of each fluid particle must consequently be rectilinear. In this

case only equation (5) is subject to no limitation in regard to the

direction of the variation of the co-ordinates.

The motion is rectilinear also when Q is not equal to nothing. For

though in this case the pressure varies along a surface of displacement,

the effect of this variation is just counterbalanced by the impressed forces,

as may be thus shewn. Let da be the increment of any line drawn

on the surface of displacement. Then

dP dQ _ a?dp ^.dx v dy ydz _ dz a

d<r da pda da da da df

the effective accelerative force in the direction of a. Since therefore,

dP dQ = Q
da da

the effective accelerative force in any direction along the surface of dis-

placement is nothing; and the velocity being the same at all points of

this surface, it follows that the motion is rectilinear.
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We may therefore conclude that in the instances of'fluid motion for
which udx + vdy + wdz w an exact differential of a function of three

independent variables, the motion of every particle of the fluid is rectilinear.

7. Hence in equations (9) and (10) the radii of curvature r, r, pass

through fixed points or fixed focal lines, and the line * coincides with

r. Hence changing ds into dr in equation (9), substituting <p' + fF(t)dt
for

(p,
and suppressing the accent, we obtain,

dQ d$ dQ
(d>_d£\d*$_d°$_ d$ d^ d$tl in

dt
+

dr' dr
+

\ dr*) dr* d? dr' drdt
+

dr\r
+
r)

~ "A >

which equation is applicable to any instance whatever of rectilinear fluid

motion.

8. I proceed now to the consideration of the more general case,

viz. that in which udx + vdy + wdz becomes integrable by being mul-

tiplied by a factor*. Let -**. be the factor. Then we may assume the

function
<p

to be such that,

(dtp)
=
jydx + ~dy + ^dz,

so that we have,

dx dy d%

The introduction of this new quantity N makes an additional equation

necessary by which it may be determined. This may be investigated
as follows. By the reasoning of Art. 3, it appears that

jjdx +
-^dy

+
jfdz

=
-^dr;

and if the variation be from one point to another of a surface of dis-

placement dr = 0. Hence the equation,

jydx
+
-^dy + jjdz

= 0,

* Mr. Earnshaw has suggested the idea of multiplying by a factor, in the Paper on Fluid

Motion already referred to.
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being by hypothesis integrable, is the differential equation of a surface of

displacement. The integral of this equation, since the left-hand side of it

is equal to {d<p), is
(p
= 0, an arbitrary function of the time being in-

cluded in
(p.

As this reasoning applies to the whole fluid during the

whole time of its motion, there will at each instant be an unlimited

number of surfaces of displacement differing according to different values

assigned to the arbitrary parameters involved in <p; also, as <p contains

the time t in any arbitrary manner, these surfaces may be supposed to

be continually changing their forms and positions. Consequently if x, y, %,

be the co-ordinates of a given surface of displacement at the time t,

x + udt, y + vdt, z + wdt, will be the co-ordinates of the same surface

in the form and position which it takes at the time t + dt, the change
of form and position being supposed to be indefinitely small. If there-

fore t be changed to t + dt, and x, y, z, be changed to x + udt, y + vdt,

z + wdt, in the equation cp
= 0, that equation will still be satisfied. Hence,

<p (x + udt, y + vdt, z + wdt, t + dt) = 0,

and expanding to the first powers of dt,

<b + / udt + -$ vdt + -£ wdt + -~ dt = 0,T dx dy dz dt

which equation, since = 0, becomes,

ft + S**+S*.+ 'S«-0 (12).dt dx dy dz

Now substituting N -4^- for u, N—^- for v, and N -r- for w, we obtain

the equation sought, viz.

ft +*m+
d

$+m=° <->

9. If in equation (12) -=y
be substituted for u, -j-

for v, and
-j-

for w,

the result may be put under the form
-j-

+ T. = 0. But it must be
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borne in mind that on account of these substitutions, the variation in

(d<p) is from one point to another in the line of motion.

10. Resuming the fundamental equation (3), and substituting in it

the values of u, v, w, we have

/d.Np\ (d.N*£\ (d.NipK

Id
d^\

at (
dx \ _ d*<p d*(p dx d*<p dy d2

<f>
dz

\ dt / dx dt dx2
'

dt dx dy
'

dt dx dz
'

dt

d*(p „ (d$ (Ftp d<p d2

<p d(p d2

cf>
\

dx dt \dx
'

dx' dy
'

dx dy c?a
'

dx dz !
'

(d.f\ (d
d
£\

and similarly for 1 - _ . / and I —-*—
/

.

Hence by performing the differentiations of the foregoing equation,
the result expressed in the notation already used, will be

Therefore by integration,

The equation (13), makes the last term disappear.

11. If N be a function of t only,

(dN) -
rdN , , s dN

Vol. VII. Paet III. Uu
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Hence, if we substitute
\js

for N~cp, the preceding equation will become,

^(^)
+ p_Q T _ + ^. ^4.^ + ^J _0,

which is the equation obtained when udx + vdy + wd% is an exact

differential, as it manifestly ought to be. The general expression for

cf>
inclusive of all the cases in which that differential is exact, would be

obtained by integrating the equation,

dt
+ V U*2 +

dtf
+

dtf)
'

dtf

on the supposition that N is a function of t only. By multiplying this

equation by N, it becomes N -~ + V 1 =
;
whence it appears that since

-^ and V are constant for a given surface of displacement at a given

time when udx + vdy + wdz is an exact differential (see Art. 6), the

factor N is constant under the same circumstances. With this limi-

tation, therefore, as to the value of N, the equation (13), holds good
at the same time that udx + vdy + wd% is integrable of itself.

12. Resuming the equation obtained in Art. 10, we have in general,

by Art. 9, if the variation with respect to space be from one point to

another in the line of motion. Also,

„cfo d.jN{d<p)~
dt - dt
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Hence by substitution,

Again, on the above limitation respecting the variation from one

point to another of space,

ss^e-yg*.
The foregoing equation consequently becomes,

rdV V*
Fit) + P-Q + J-^ds + — =

(14),

which is precisely the same in form as equation (7), and differs only in

being limited as to the direction of variation of the co-ordinates. The
same equation subject to the same limitation may be obtained directly

from equation (2) as follows.

If F be the sum of the impressed forces and f the effective acce-

lerative force in the direction of an arbitrary line s drawn in the mass

of fluid in motion, then by D'Alembert's Principle and Hydrostatics,

dp = P {F-f)ds.

But Fds =
(X.?£

+
F.gf

+
Z.jgj

ds = Xdx + Ydy + Zd%.

Hence, by integration,

P - Q + ifds = F(f).

If V be the velocity in the direction of s,

J "
\dt J

"
dt

+
dt :

indicating by (dV) as before,

dV , ^dV, ^dV,
-j-dx +

1¥
d
!, + —dz

UU 2
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Now if V be the whole velocity and not otherwise, that is, if the line

s be drawn in the direction of the motion,

dx _ v dx dy _ v dy dx _ d%

di~ d~s' di~ Ts' d~t
~

ds'

and (—> = V (— — — ^ — —) V—
dt \ dx

'

ds dy
'

ds d% ds!
'

ds

Hence by substituting the resulting value off in the above equation,

rdV V*

In consequence of the limitation to which this equation is subject,

it cannot be argued, as in the former case, that the motion is rectilinear,

and we may therefore conclude that when udx + vdy + wdz is integrable

by a factor the motion is curvilinear.

Another remark may also be made here. By assigning a given value

to P — Q, the above equation becomes the equation of a surface for all

points of which P — Q has that value at a given instant. Hence dif-

ferentiating the equation with respect to space and putting the differential

under the form

dP-dQ= - ~ds - Vd V,

the variation of P— Q on the left-hand side of the equation will be the

same in passing from a point of that surface to a point of another such

surface indefinitely near, whatever be the relative position of the points.

We may therefore suppose the variation to take place from one to the

other of the points of intersection of the line of motion with these two

surfaces, to which variation the quantities on the right-hand side are

limited. Hence the equation holds good notwithstanding that limitation.

13. Our next step will be to effect a transformation of equation (1)

analogous to that which was made in Art. 4 on the supposition that

udx + vdy + wdz is an exact differential. The transformation will now

be made by means of equation (13), and therefore on the supposition that

that quantity is integrable by a factor **>. I
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Since u = N-~, by equation (13),

dx' dt
+

\dx*
+
df

+
dx2

)

~ "'

whence by differentiating with respect to x,

d*cj> d± d*<f> dj> d<j> d<f> (d$ d*$ d$ d2

(j> d<p d2

<p
\

du _ da?' dt dxdt' dx dt
*

dx\dx' da? dy' dxdy dx'dxdxl

dx~ d(fi dfi e^F"
+ M d(j>

2

d(j>
2\*

'

da?
+
df

+
dx? \dx2 +

dy
2 +

dx?)

Similar expressions having been obtained for -=- and —r- , it will

be found by adding them together, and having regard to the formula

in Art. 2, for —I-
—

, that,
r r

/du dv dw\/d<p
:

d<p* d(p
s\_d2

cp d<p d 2

<p dip d 2

(p d<p d2

<f> d<\>

\dx dy dx)\dx2

dy
2 dx2

) dx2 dt dxdt' dx dy"
'

dt dydt' dy

d2

(p d$ d?cj> dj> dcfr (d<j? d<p djjt\
* / 1

1_\+
d¥'~dl

~
dx~dt' dx* dt \da?

+
dy

2
+

dx2
) \r

+
7)

'

which equation may be reduced as follows to one of a simpler form.

Equation (13) gives,

<!£ _. %*(*<£ .tip + *£y - v*& -*- *£ 4. *£)
dt2 \dx2 df dx2

)

'

\dx?
T
df dx2

)
'

Hence d<p* ^ d£ =± d£wence'

dx*
+

dy
2 dx2 V 2

' df

Also, by multiplying equation (13) by N-^- , it will appear that,

dt dx

and this equation by differentiating with respect to x gives,
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d*<p d(j> _
d2

<p d±_ }_ d<p*{2u
dV du

~dx*
'

It
~
dxdt

'

~dx
~ V%

'

dt* \ V '~dx dx

d*<p d<p dty d<j> 1_ djff^ dV _dt\S°
dtf

'

dt dydt' dy V*' dt\ V '

dy dy)'

d*<p d<p d*<p d<j> _ J_ dcj?(2w_
dV _dw\

d%2 dt~ ~iRdi'd%~V*' df\V dz d%)'

When the several values thus obtained are substituted in the fore-

going equation, the result is,

du dv dw _ u dV v dV w dV i\ 1\

dx dy d%
~~ V dx V dy V d% \r r)

'

If now the condition be introduced that the variation from one point

to another of space be in the line of motion, we shall have,

u dx v _ dy w _d%
r'di* Tm

d*' r~~ds''

and the above result is reduced to the following,

du dv dw _dV rrf^- 1\
dx dy d% ds \r r'l

'

Consequently by reasoning exactly as in Art. 4, an equation the

same as (5) results: and by eliminating p from this equation by means

of equation (14), the equation (10) is reproduced. We may therefore

conclude that the same differential equation of the second order, in ivhich

V is the principal variable, applies to curvilinear as to rectilinear motion,

the variation of the co-ordinates at a given time being from one point to

another in the line of motion.

14. The reason of this result will be seen by the following consi-

derations. Conceive two surfaces of displacement to be drawn at a given

instant indefinitely near each other, one of which passes through the

point P given in position. On this surface describe an indefinitely small

rectangular area having P at its centre, and having its sides in planes

of greatest and least curvature. On the other surface take a similar
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area, such in magnitude and position that the straight lines joining the

corresponding angular points of the two areas are normals to the first

surface. By the nature of curve surfaces these normals will meet two

and two in two focal lines situated in the planes of greatest and least

curvature, and cutting the normals at right angles. Let the small area

of which P is the centre be m?, and let r, r be the distances of the focal

lines from P. Then if the positions of the focal lines do not vary with

the time, the other area is ultimately
— £ > the interval

between the two surfaces of displacement being a given small quantity

ir. This is the case of rectilinear motion. But if the direction of the

motion through P is continually changing, the surface of displacement

through that point will vary with the time. Hence the positions of

the focal lines and the magnitudes of r and r' will change continually,

whilst the area m* may be supposed to remain the same and always

to pass through the point P. Let r and r' represent the values of the

principal radii of curvature at the time t, and let a and fr be the velo-

cities of the focal lines estimated in the direction of the radii of curva-

ture and considered positive when the motion is towards P. Then at

the time t + it the values of r and r become r — ait and r' — frit,

and the elementary area on the second surface is

, (r + ir - ait) {r' + ir- frit)m -

{r
-

ait) (r'
-

frit)

which is equal to

/ _ ait N / _ _fri±_\
, (r + ir) (r' + ir) V r + irl \ r + ir )

-
"

?
*

Mw-£)
'

or,

„.fc£Mpir)
.

(l
+^ (l

+ 2i^) ultimateIy .

Hence, by omitting quantities of the order of x — , the result is

the same as when the position of the focal lines is supposed to be fixed.

If therefore V and p be the velocity and density of the fluid which



388 PROFESSOR CHALLIS, ON THE DIFFERENTIAL EQUATIONS

passes the area m2

, and V and p the velocity and density of the fluid

which simultaneously passes the other area, then assuming these quan-
tities (as is permitted) to be uniform during the small time St, and con-

sidering the velocity positive when directed from the focal lines, the

increment of matter between the two areas in the time It is

, (r + Sr) (r' + Sr) , v ,u . —1— m .
'—

i o V ct + nr . pVSt,
rr r r

or,
- m2St{

d
-^~ f pV (J t ?)}ir ultimately.

And this quantity is also equal to rrfSpSr ultimately. Hence

m*SP Sr + wtMrf^f
+ pV(\ +

£)}
= 0.

,

And passing from differences to differentials,

dp d.pV T,i\ 1\

which coincides with equation (5).

15. To complete our investigation it will now be requisite to ob-

tain the partial differential equation containing the variables cp, x, y,

z and t, <p being the principal variable. This is readily done in the

case of an incompressible fluid. For substituting N -J- for u, N -— for v,ax ay

and N -f for w, in the equation -=— + -*- + -j— = 0, the result is,
as,

* ax ay d%

dN
d<j>

dN d<p dN d(p /eP0 d^p eP<p\

dx
'

dx dy
'

dy d%
'

d% Kdx2

dy
2 dz2

)

And eliminating JV by means of the equation

dt
+ M

[dx2 +
dy

2 +
~dz~

2
)

°'
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the required equation is found to be,

tdtf d<p
2

d(p
s
\

ld<]>
d2

<f> d<j> d2

(j> d<p d2

(p d<j> cPft d±d*<p d(j> d'(p \

\dxi

dy* dsfjydt'dx* dx'dxdt dt'dy
2

dy'dydt dt' dz' dz'dzdtj

d<f> (dp d*(j> d<j? cNp dcjf d2^~
Hi' \da?

'

da? dtf
'

dy
2 + Hz1

'

dz*

ety d<}> d*<p g d$ dtp d^ ^dQ d$ d2

<p
\ = Q

dx' dy' dxdy
'

dx
'

dz
'

dxdz dy' dz' dydzj

According to the views maintained in this Essay, the above is the

equation that should be employed in the Theory of the Tides : but it

is probably too complicated to be available for that purpose. However,
the simple equation,

is integrable at once, and gives V = ^— . And as, from what is shewn

in Art. 14, the variation of V at a given point is the same as if r and

r were constant,

dV <p\t) „ .„ ,
,

. cdV , d>'(t) AT . /, h

-dJ
=W' Hence if r.= r + A, fe dr. - - 5^i Nap. log. (l

+ -

Consequently by substituting in equation (14)

F^t) + P-Q -
^Nap.log. (l+|) -+ £= 0.

It would be beside my purpose to inquire now into the applications

that may be made of this equation.

16. A differential equation in which the principal variable
<j>

is a

function of x, y, z, and t, might also be obtained for the case of a com-

pressible fluid, but it is of so complicated a nature that no use could

be made of it, and I therefore omit writing it down. It is important
to observe, that for curvilinear motions this equation rises to the third

order. The inference to be drawn from this circumstance is, that the

forms of the surfaces of displacement are entirely arbitrary in the general

case of curvilinear motion, the three arbitrary functions which the com-

plete integral contains, having to be determined by given conditions

Vol. VII. Part III. Xx
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respecting the velocity, the density, and the form of the surface of dis-

placement. This consideration will enable us to draw some inferences

in particular cases without having recourse to the general equation.

For example, the forms of the surfaces of displacement being any
that we please, it may be assumed that a given surface of displacement,

that is, one with which the same fluid particles remain in contact at suc-

cessive instants, continues of a spherical form. Its differential equation

will then be,

2x (x
— a)dx + %y {y

—
(Z)dy + 2z

(ss
— 7) d% = ;

and the equation itself,

(x
- af + (y

-
/3)

2 + (s- 7 )

2 =iF;

in which a, /3, 7, B, may either all be functions of the time, or part

constant and part functions of the time. Let, for instance, a, (B, 7 be

constant and B a function of the time. Then since

<f>
= (x- «)+ (y

-
/3)

2 + (2
- 7 )

2 - B>,

it will be seen that

£-«<•-* £-«*.-» jf.rW

because B is by hypothesis the radius of the spherical surface in suc-

cessive instants. Hence by substituting in the equation,

the result is,

2i?r+ 4iVi22 =0; whence iV=-^.

Hence, as JV is not a function of the co-ordinates x, y, %, the differ-

ential udx + vdy + wdz is integrable of itself, which for this case it

plainly should be, the motion being directed to or from a fixed centre.
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17. Again, suppose a, /3 and R to be constant, and 7 to vary with the

time. This is to suppose the surface of displacement in successive

instants to be that of a sphere of given radius moving in a direction

parallel to the axis of x. We shall have

and therefore

Hence iV=^.^;

and V - N(d^ + -^ +
rf*Y - *~ 7 ^ 2 »- s ~ V rfYand ^ _iV fe + ^ +
tf?j

~
2^ '~di'

2ie
-—R—-dI-

Now the general equation (10), when no impressed force is supposed
to act, and when terms involving higher powers of V than the first are

omitted, becomes for the case in which the motion is directed to or

from a centre,

: d*V d*V 2a* dV *a*V
«r dt r dr r

the same equation being applicable whether the centre be moving or fixed,

as is shewn in Art. 13. This equation is readily transformed into

d\Vr ,jd\Vr ZVr— a9

dt2
\ dr* t*

the integral of which obtained by Euler (see Peacock's Examples, p. 473)

gives,

^- -±{Ar-at) + F(r + at)\ + I {f (r
-

at) + F(r + at)}.

If the arbitrary function F be supposed to vanish, the motion will be

propagated from the centre, and for this case

rr _ f(.r~ at) Ar ~ a t)—
*

r r

xx 2
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At the same time equation (14) to the same degree of approximation

becomes,

And if P = 1 + % P = a\ Nap. log (1 + 8)
= aU nearly. Also

dV - „ f(r-at) fir -at)
at r r

Hence / -rrdr = — « - — -.
J at r

and F.(t) + a*$ = a/'^
~

at)
.

When the motion is directed to a fixed centre, these results apply
to the whole of the fluid in motion, and at any time. When the centre

is moving, r is in general a function of the co-ordinates of the point con-

sidered, and of the time, and the same results are applicable to all

the points for which this function can be assigned. For instance, in

the example considered above, in which the surface of displacement is

that of a sphere of given radius, the centre of which moves in a straight

line, r is at all times constant for all points of this surface. We have,

therefore, from what is shewn above,

%- y ^y _f'(R - at) f(R -
at)

R dt
~ R R>

an equation which is true whatever be t. Let
-y- , the velocity of the

centre of the surface, be mtp(t), and let —^ = cosfl, being the angle

which the radius of a point whose co-ordinate is % makes with the line

of motion. Also let f(R- at) = f. Then f(R-at) = --<¥. Conse-
' a at

quently for determiningf we have the differential equation,

4- +^ + maRcos9(p(t) = 0.
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By the integration of this equation f is obtained ; whence — and

consequently the density and the pressure at the surface of displacement
are known. The question I have been considering is evidently identical

with the Problem of the Resistance of the air to a vibrating sphere, of

which I have given a solution in my last communication to this Society.

But the method there employed, for obtaining the above equation,

requires the reasoning I have now gone through to render it complete.

18. Another inference may be drawn from equation (10) on the

supposition that Q = and V is very small. It thus becomes

Now if r and r' be each infinitely great, the motion is strictly recti-

linear, and must be the same at all points of any plane drawn perpendicular

to the direction of propagation. But if r and r' be very large but

not infinite, and if the motion be vibratory, we may conceive a portion

of the fluid of the form of a cylinder to be alone agitated, whilst the

rest of the fluid is stationary. The values of r and r' must, however, be

infinitely great for points on the surface of the cylinder, and the velocity

and condensation there must vanish. If the condensation be symmetrically

disposed about the axis of the cylinder, the motion of particles situated

on this axis will be rectilinear, but the vibrations of all other particles

will be partly longitudinal and partly transversal. A line drawn at

a given instant in the direction of the motion of the particles through
which it passes will be of a serpentine form, approaching nearer to a

straight line as r and r are greater. That r and r' may be large,

the diameter of the cylinder must be large compared to the breadth

of an undulation. These considerations applied to the Undulatory

Theory of Light, will account for the rectilinear propagation of a small

cylindrical pencil of light without divergence.

Cambridge Observatory,

April 8, 1842.
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ADDITIONAL NOTE.

The following is a proof of the Proposition enunciated in Art. 6, viz.

that when udx + vtly + wdz is an exact differential the velocity does

not vary from one point to another of a surface of displacement.

When the continuity of the fluid is maintained, the most general

supposition that can be made respect-

ing the directions of motion in each

indefinitely small fluid element is, that

they are normals to a surface of con-

tinuous curvature, and consequently
that they pass ultimately through two

focal lines perpendicular to their di-

rections and situated in planes at right angles to each other.

Let, therefore, PWO, pqr be straight lines drawn in the directions

of the motion at a given instant at two points P, p, of an indefinitely

small element, and let them pass through the focal lines Wq, Or. The

point P is referred to the rectangular axes AX, AY, AZ. AM = X,
MN = Y, NP = Z. Pp is drawn parallel to AX and is equal to §X.

Let OW —
I, WP = r, and draw ps perpendicularly on OWP. Then

Ps = Sr. Take now another system of rectangular axes Ox, Oy, Oz,

of which Ox coincides with OWP, Oz with the focal line Or, and

Oy is parallel to Wq. Let Or = h, Wq = k. Suppose the equations

of Pp referred to the axes Ox, Oy, Oz, to be x = az + a, y = bz + (S.

Because it passes through P, the co-ordinates of which are x = I + r,

y = o, z = 0, it follows that a = I + r, and (Z
= 0. Hence the equations

become x = az + I + r and y = bz.

Again, let the equations of pqr be x = mz +?i, y =pz + q. As this line

passes through the point r, the co-ordinates of which are x = 0, y = 0,

z = h, we have = mh + n and 0=ph + q. Therefore x = m(z — h), and

y = p (z — h). Since also the line passes through q, the co-ordinates of
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which are x = I, y = k, z = 0, we have I = n. Hence mh = —I, and

h = . The equations of pqr thus become x = m% + l, y = p{%+ — \.

Now the co-ordinate Os of the point p is / + r + Sr. Hence, the first

Sr
equation of Pp gives I + r + Sr = a% + I + r, or % = —

, and conse-
tit

quently from the second, y — -.Sr. These are the other two co-

ordinates of the point p. By substituting these values of the co-ordinates

in the equations of the line pqr, which passes through p, we shall readily

find that m = a + -$- , and p — =-i J- .

Sr r I + r + Sr

If now x = a'z, y = b'% be the equations of a line drawn through
a'O parallel to AZ, the cosine of the z NPO = ...

;
and the

V 1 + a'
2 + o"

cosine of the i npr — — ==— .

" = . Hence by substi-p
n/1 +«" + ** s/l +mT

+p*
J

tuting the values of m and p, expanding to the first power of Sr,

and remembering that 1 + aa' + b b' = 0, it will be found that,

a' / I + r + bb'r . \
cos / apr = —7============ . 1 + j—tj r- Sr .

v/1 -i- a'
2 + b'

2 V aa'r{l + r) )

Let V and V + dV be the velocities at P and p at the same

instant, and let w and w + Sw be their components in the direction

of the axis of as. Then

Vd
w = P'cos z NPO =

v/l + a'
2 + *'

2
'

(F + SV)a (
I + r + bb'r

and w + 3?p = (r+ SF)cos * npr = \ i ,
'

.,. 1 + 7-77-
—r.^r7 r

^/\ + a
'2 + b'

2 \ aa r(l + r) J

V(l+r + bb'r)Sr dSV ... . ,

Consequently, Sw = — , 7

v
.
—

. = + .
,

== ultimately.H "
ar(l + r) v/l + a'

2 + bn \/l + a'
2 + b'*
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Also, cos /.pPs = a
==

,
and 8X = — s/\ + a* + b\ Hence

Vl + dr + o2 a

V VbV adIV
Iw r l + r <>r

%X v/(l + d + b") (1 + d~ + V*)

'

If therefore the variation of velocity bV from P to p be the

same as from P to s, that is, if the variation be nothing from p

to s, the limit of the ratio -5— , is the differential coefficient -y- ,

dr dr

taken as if the variation were from one point to another of the line

OWP. Hence,

V Vbb'
,
dV

t
,

— +
-j

+aa .—j-sdw r I + r dr
dX v/(i + a* + b*) (1 + a'

2 + b")

'

The value of -r~ is evidently derived from that of
-pp. by in-

terchanging a, a, and b, V
; and since, when this is done, the right-

hand side of the equation is unaltered, we conclude that -r^v = -r>s-dX dZ
~ dw dv , du dv
So

-dT
=
dz'

and dY=dX-

Consequently, udX + vdY + wdZ is an exact differential.

Cambridge Observatory,

May 27, 1842.



XXII. On the Propagation of Luminous Waves in the interior of

Transparent Bodies. By the Rev. M. O'Brien, M.A., late

Fellow of Caius College, Cambridge.

[Read April 25, 1842.]

§ 1. The chief object of the following Paper is to investigate what

effects may be due to the action of the material particles upon the

etherial, in the case of light transmitted through a transparent body;
and among other things to shew that the dispersion of light in passing

through a prism may be acounted for without having recourse to the

Hypothesis of Finite intervals*.

The following is a brief statement of the results arrived at, some of

which, if true, must be of considerable importance in the Undulatory

Theory of Light.

§ 2. I have endeavoured to prove :—
(1°) That the action of the material particles upon the etherial is very

nearly the same as if the former particles were absolutely fixed. (See § 14.)

(2°) That this action introduces certain simple terms, viz. :
—

mC mC n m C-—
a,

-'—
/3,

- '—
y,m m m

into the equations of motion of the etherial particles. (See § 15.)

*
By the Hypothesis of Finite intervals, I mean the hypothesis that the particles of ether

are placed at intervals which are finite compared with A, the length of a luminous wave;

or, what amounts to the same thing, that the intensity of the molecular force exercised by
one particle upon another is not very small at the distance A.

I may here observe, however, that the present paper does not in any way assume that

this hypothesis is not true, as will appear in Art. 12; it only attempts to shew that the

undulatory theory can do without it. In one place, indeed, I have endeavoured to shew

that the Hypothesis of Finite intervals is very improbable.

Vol. VII. Paet III. Yy
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(3°) That the law of molecular force is not likely to be such as

to make C zero in all cases. (See § 16.)

(4°) I have investigated the condition necessary in order that the

equilibrium of the etherial particles may be stable. (See $ 16.)

(5°) Also the conditions necessary in order that the vibrations of

the ether may be wholly transversal or wholly normal. (See § 18, 19.)

(6°) I have shewn that the equations of motion may be each solved

separately when the vibrations are wholly transversal or wholly normal.

(See § 20, 21.)

(7°) That transversal and normal vibrations are in general propagated

with different velocities. (See § 25.)

(8°) That the velocity of transversal vibrations may be of any

magnitude, the propagation of normal vibrations impossible, and yet

the equilibrium stable ; and here I have shewn that the law of molecular

force cannot be the inverse fourth power, nor the inverse square, if

the theory of transverse vibrations be true. (See § 20.)

(9°) That the action of the material upon the etherial particles

produces an alteration in the velocity of light which is different for

different colours. (See § 28.)

(10°) I have investigated the additional alteration which the motion

of the particles of matter produces in the velocity of light, and shewn

that it must be extremely small, and that it does not depend on the length
of the wave if C be zero; and that consequently the motion of the

material particles cannot produce dispersion independently of their direct

action on the particles of ether. (See § 29.)

(11°) I have shewn that light cannot be propagated with a uniform

velocity in transparent bodies, unless the particles vibrate according to

the cycloidal law. (See § 33.)

(12°) That the consequence of this must be a dispersion of homo-

geneous light in passing through a prism, when the vibrations are not

cycloidal. (See § 35.)
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(13°) I have calculated the amount of this dispersion, and shewn
how we may determine experimentally whether the vibrations of light

are cycloidal or not. (See § 38.)

(14°) I have shewn that the variation of the velocity of propagation

may lead to the formation of dark lines in the spectrum, but I have

not attempted to pursue this subject into detail in the present paper.

(15°) In the course of the paper I have introduced the hypothesis
of symmetrical arrangement, merely for the purpose of avoiding com-

plexity, but at the conclusion of the paper I have abandoned this

hypothesis, and shewn, I think, by simple reasoning, that the results

previously obtained on the supposition of symmetrical arrangement are

true when the arrangement is not symmetrical, in consequence of the

action of the material particles on the etherial. This part of the sub-

ject is of considerable importance, as I hope to shew fully hereafter, and

most probably leads to an explanation of the absorption of light by

transparent bodies, and the natural colours of bodies. (See § 40, &c.)

All these results, so far as I am aware, are new, except the seventh,

which the late Mr Green announced in the Cambridge Philosophical

Transactions, Vol. VII. Part i., without, however, proving it. Since

I read the present paper before the Society, I have been informed that

M. Cauchy has arrived at the same result.

§ 3. I must here notice a Memoir by M. G. Lame, in the Journal

de VEcole Polytechnique, Tome XIV, in which his object is to in-

vestigate the effect produced by the action of the material par-
ticles on the undulations of the ether considered as a continuous fluid
mass. The analysis he makes use of is extremely complicated, and

is altogether different from that employed in the present paper.
There is one of his results which appears to be the same as one of mine,
but really is not: it is this, that the force exercised by the particles

of matter on the ether produces an alteration in the velocity of light,

which gives rise to dispersion: he obtains this result on the express

condition, that the force exerted by the particles of matter varies as

(distance) ~". Now I have shewn (if my reasoning be correct) that

Y Y 2



400 Mr. O'BRIEN, ON THE PROPAGATION OF LUMINOUS WAVES

there is no alteration produced in the velocity of light when the

force exerted by the particles of matter varies as (distance)
-

-'

: and my
explanation of dispersion falls to the ground if the law of molecular

force be (the distance)
-2

.

I think therefore, that I am fully justified in saying, that M. Lame
has not anticipated me in the explanation I have given of dispersion ;

indeed, a cursory reading of the two papers is quite sufficient to shew
that there is no resemblance between them in principle or detail*.

ANALYTICAL INVESTIGATION.

$ 4. I suppose that the etherial medium consists of a set of

discrete particles, that one particle exerts upon another a force which

acts in the line joining the particles, and is some function of the

distance between them ; and I suppose, that in transparent bodies

the particles of matter and the etherial particles act upon each other

in a similar manner.

§ 5. To form the equations of motion of the etherial medium as it

exists in transparent bodies.

Let x, y, %, ) be the co-ordinates of any two par- \

x', y, %,\ tides of ether, P and P', I when in a state

the co-ordinates of any particle P\
\ of equilibrium,

of the transparent body, J

x + a, y + /3, as + 7,
j

the co-ordinates of the same particles
x + a, y + /3', % + 7,1 respectively at any time t during
x

,
+ ",» V, +

Z
3

/' */ + 7/»' tne motion.

*/. y,>
*,.}

r the distance between P and P',1 when in a state of equi-

/ ... do do. ... P and P„\ librium.

r + p,\ the distances between the same particles respectively
r + p'J at the time t.

* M. Lame has also attempted to account for the formation of the dark lines in the

spectrum, but he assigns a cause very different from that which I have shewn may produce
these remarkable interruptions.
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m rf(r) the force of P' on P,

m^'fyi?) ... do. ... of P
4
on P.

Then the force of P' on P at the time t resolved parallel to the

axis of x is

3C -\- a —
J]C

• a
m(r+ p)f{r + p) , which = m/{r + p) (x + a - x - a),T + p

and we have similar expressions for the resolved parts of the force

of P, on P; hence we evidently have

d* a. \

-^
= Zmf(r + P)(x' + a - x - a) + ^mrfir' + p) (X/ + U/

- x - a)
J

d28 d2y /•••(«•)

and similar expressions for —£ -~ \

The sign of summation 2 refers to all the particles of ether, and 2,

to all the particles of matter, which exert sensible forces on P.

§
6. To simplify these equations when the motion is a very small vibra-

tory motion.

For the sake of brevity assume Sx, $a, to denote x —
x, a —

a,

respectively, and a similar notation with respect to the other co-ordinates ;

also assume Ax, Aa, to denote x
4
—

x, a
t
—

a, respectively, and a similar

notation with respect to the other co-ordinates.

Since the motion is a very small vibratory motion, we may assume that

the relative displacement of any two particles is very small, compared
with the distance between them.

This assumption, so far as I am aware, has been made by every
one who has written on the subject of undulations, whether in the

case of light or of sound
; indeed the equation of continuity in Hy-

drodynamics cannot be proved unless this assumption is made. But

it seems to me to be no assumption in the present investigation, at least

if we confine our attention to the case of light at some distance from

its source ; for example, solar light at the Earth : for suppose that there

is a considerable degree of condensation and rarefaction in the ether

in the immediate vicinity of the Sun, be it ever so considerable there,
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it is clear that it must be very small at the Earth ;
for it must vary

inversely as the square of the distance from the Sun ; hence we are safe

in supposing that there is very little condensation and rarefaction in

the undulations of ether which constitute the solar light we have to

do with ;
and if the vibrations be transversal, as we have every reason

to suppose them to be, this is still more evident ; for transversal vibrations

cannot be propagated unless the variation of the density of the ether

caused by the motion be extremely small.

If there be very little condensation or rarefaction in the ether, it

is clear that the relative motion of any two contiguous particles must be

very small, compared with their actual distance from each other. Indeed

if this be not true, the principle of the superposition of small motions

cannot be applied to the etherial undulations, and the whole undulatory

theory must fall to the ground ; moreover, the velocity of light in vacuum
cannot be uniform, as we know it to be. Hence I think that there

is just the same degree of assumption in supposing that the relative

motions of the etherial particles are very small compared with their

actual distances, as there is in supposing that light consists in a succession

of undulations. I make these remarks because I have heard objections

urged against the simplification I am now about to make in the equations
of motion, and which has been made by every author I am acquainted

with, under similar circumstances.

Proceeding then upon the assumption, if it may be so called, that

the relative motion of two contiguous particles must be very small,

compared with their actual distance from each other, it is evident that

la, 1(3, ly, and p, must be very small, compared with Ix, ly, 1%, and r\

hence since

r2 = lx> + If + lz\ and (r + pf - {$* + lay + {ly + &&> + (j« + lyy,

we have very nearly, (subtracting, and dividing by 2r,)

P = -(Ixla + lylp + lzly);

therefore since fir + p) (Ix + la) = \f(r) + Pf(r)\ (Ix + la), we have

(neglecting pla and putting for p its value)
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f(r + p) (5jj + Sa) = f(r) $X + Sa) + -f'(r)$x($x$a + fyd/3 + &*$y).

Hence, transforming in the same manner the similar quantities in the

equation (A), and observing that by the condition of previous equi-

librium we have

^mf{r) Sx + 2,j» (0(r') Ax = 0,

the equation (A) becomes

£j = -2m {f(r)U + -f(r)Sx($xSa + hylfl + Hly)\ )*~ r
! (J?).

+ 2,mt {<p(r') Aa + -,$' if) Ax(Ax Aa + AyA(l + AssA7)} \

(7. I shall now proceed to put these equations in the form of

partial differential equations, in order to make them more manageable.

I must first observe, that a, /3, 7, a
/9 (3t , y/t x, y, ft, x

t , yt , ss,,
&c. are

quantities which, at first sight, do not appear capable of continuous

variation, since they belong to a set of discontinuous points : but not-

withstanding this, we are evidently quite at liberty to look upon
these quantities as continuous variables; for instance, we may suppose
that a is a continuous function of x, y, ss, t, having the proper value

when x, y, z become the co-ordinates of any particle of ether : for,

originally, we only assumed that a has certain values when x, y, z

belong to any particle of ether, but we made no assumption whatever

respecting the values of a when x, y, 1 do not belong to any particle

of ether, and therefore we may suppose these values such, that a

shall be a continuous function of x, y, z, t for all values of x, y, z,

and the same is true of /3, 7, &c. It is just on the same principle

that we may draw a continuous curve through any series of detached

points.

In reducing the equation (2?) to the form of a partial differential

equation, I shall first omit the part under the sign S
/9

and afterwards

restore it; this will be found the simplest course to pursue.

§ 8. To put the equation (B) in the form of a partial differential

equation, omitting the part under the sign S
y
.
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As we have just explained, a may be considered to be a continuous

function of x, y, »', t ; and a is its value when x' = x, y = y, z = % ; hence,

by Taylor's Theorem, we may suppose a - a or $a expanded in the form

da . da . da s «*
2a &«" d"

2a II ds a Sy"

d-x
Sx +

d^^
+ d-J

z + d^^- +
dx-ry

^^ +
dr f + &c - &c-;

if we substitute this value of $a in equation 2?, -7- -=- -=- -=-^ &c.^ «# ay as aV

may all be brought outside 2, and in the same manner, if we sub-

stitute similar expressions for S/3 and iy, the partial differential co-

efficients of (& and 7 may be brought outside 2: the result of these

d* a
substitutions will evidently be a linear equation between -7— , and the

successive partial differential coefficients of a, /3, 7 with respect to

x, y, %, multiplied by such quantities as

2mf(r)§x, *Lmf(r)Sx\ Zmf(r)Sx§y, &c. &c. :

these quantities will evidently be, in general, different for different

particles ;
that is, they will be functions of x, y, % ; hence the equation

(2?) will, in general, become a linear differential equation with variable

coefficients.

We cannot determine what functions of x, y, % these coefficients

are, since to do so we ought to know the law of force of one particle

on another, and the manner in which the particles are arranged when

in a state of equilibrium, neither of which things we know ; hence it

appears impossible to make use of the equation (2?) unless we employ
some hypothesis to simplify it.

§ 9- The hypothesis which naturally suggests itself is, that of a

symmetrical arrangement of the particles when in a state of equilibrium.

But there is a difficulty here, arising from the influence that must be

exerted by the material particles on the arrangement of the etherial

particles; for supposing the material particles symmetrically arranged,

it is evident that if there be a number of etherial particles surrounding

each material particle, the arrangement of the former cannot be symme-
trical ; for they will be disturbed from their positions of symmetry by the



IN THE INTERIOR OF TRANSPARENT BODIES. 405

forces exercised on them by the material particles. Hence, if there be a

number of etherial particles surrounding each material particle, it is impos-

sible, in general, that both sets of particles can be symmetrically arranged.

But let us suppose that there are not so many, or at most, as many
etherial particles as there are material, then it is evident that if the

material particles be symmetrically arranged, so also will the etherial.

The following figures will make this evident. Figure (4) represents

what we may conceive to be the arrangement of the particles when
each material particle is surrounded by several etherial; the large dots

representing the former, and the small dots the latter. Figure (3) represents

what may be the arrangement when there are fewer particles of ether

than of matter ; and Figure (2) when there are just the same number

of both. Figure (1) represents what, I think, is not at all an improbable

arrangement in the case of very transparent bodies, where, though there

are more particles of ether than of matter, yet the arrangement is

symmetrical, in consequence of the etherial particles being repelled so

strongly by the material that they form themselves into globules, which

may be regarded each as one particle: I shall hereafter explain on what

grounds I conceive this to be a very probable arrangement in the case

of very transparent bodies.

Fig. (1.) Fig. (2.)

Fig. (3.) Fig. (4.)

• • • • • -.-•;-:••:- • •

• • •
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§ 10. I shall now make use of the hypothesis of symmetrical arrangement
to simplify the equation (B), which hypothesis, as I have shewn, necessaiily

implies that there are not so many, or at most, as many particles of

ether as there are of matter, or that the etherial particles are formed

into globules by the repulsion of the material particles. But I make use

of this hypothesis merely for the present in order to make myself more

readily understood. I shall hereafter prove that the results obtained

by means of this hypothesis are equally true when the arrangement of

the etherial particles is unsymmetrical, in consequence of the influence

exerted on them by the material particles.

$
11. To simplify the partial differential equations by means of the

hypothesis of the symmetrical arrangement of the etherial and material

particles.

If the particles be all arranged symmetrically, it is evident that we

may so assume the axes of co-ordinates that the arrangement of the

particles shall be symmetrical with respect to them. This being the case,

it is evident that, if F(r) be any function of r, 2.m\F(r)$x
t
'$y''$z'\ is

zero unless each of the indices p q and s be even, and if each of these

be even, then this sum is the same for every etherial particle, i.e. it is a

constant. Moreover, p q s may evidently be interchanged without

altering the value of this sum.

Hence if we put

mM = Vm{f(r)$a?\, mN - S.mi-f'(r)SafSf\, mP = 2»t
ji/'(r)^4

the partial differential equation becomes (omitting at present .the part

under the sign 2 )

1^
d?a _ M id^a d*a (Pa\ P d*a.

m ~dti
~

~2 \da?
+
df

+
dz* I

+
2 da?'

2 \dy- dtf dxdy dxd%)
'

+ differential coefficients of the 4th and higher orders.

Now there is a very simple relation between P and N: for put

for a moment $x = u cos 6, $y = u sin 6, then (in virtue of the sym-

metry of the arrangement) for each value of u and r, admits of a

set of equidifferent values whose sum is 2tt; therefore
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2-/'(r)^ = L-f'(r)u
A co&'e = 2-/

,

(r)-(8 + 4cos20 + cos40),

=
l^-f^)u\

and 2-/»^%! - 2i/'(O«
4 cos8 0sin 2 = S-^^lU - cos 40),

hence P = 3 N.

M + P M +N
Hence if for brevity we put

—-— = A, —-— « B, and therefore

P NA - B =
o~
~ ^' *ne differential equation becomes

+ differential co-efficients of the 4th and higher orders. I

Where,

P =
|
2
{/(r)^

2 +
J/' (r)Sa%* }

.

It is easy to see from what has been proved, that in these ex-

r2
r'

pressions we may put
— for 6&, and — for Sx'hy*, and the values

of A and 2? will be unaltered. Hence, if R =
r,/(r) it is evident

that we have the following simple expressions for A and B,

72 here l'epresents the law of molecular force.

$ 12. To compare the magnitudes of the several terms which compose
this equation ; supposing the vibrations of the ether to constitute a common
wave of light whose length is X.

z z 2
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It is evident that on this supposition a, /3, 7 will be of some such

form as c sin — (vt
— px — qy — n) (where p

2 + q* + ,s* = 1) ; hence the
X

second differential coefficients of a, /3, 7 will evidently be of the same

€ C
order of magnitude as —

, the fourth differential coefficients as -j, and
X X

so on.

Again, it is evident that Sx, Sy, 1% are of the same order of mag-
nitude as r, and rj"(r) as f{r) (for if we suppose f(r) = Mr"1 +Nrn + &c.

then rf'{r) = mMf™ + nArr" + &cc), hence in the equation (6) the part

involving second differential coefficients is of the same order of mag-
r*

nitude as 2y(r)
- c; the part involving fourth differential coefficients
X

as 2/Xr) -4 c, and so on.
X

Now we know that the molecular forces of all ordinary bodies are

quite insensible at the smallest distances that can be measured ; and

therefore they must be so at the distance X, which, though small, is

yet measurable; hence we may suppose that the particles of ether

exercise no sensible force at the distance X, and this being the case,

2y*(r)— c must be extremely small compared with ^,J"(r)—^c, since r
X X

is the distance between two particles which exercise a sensible force

on each other. I think we are quite justified in this supposition by

analogy, especially if we consider how much more minute the ethereal

particles must be than those of matter ; for I can scarcely conceive

that the delicate particles of ether can exercise a sensible force at a

greater distance than the comparatively gross particles of matter do.

Besides, observation seems to shew that all colours are propagated with

equal velocity in vacuum : now if the particles of ether exercise a

sensible force at the distance X this cannot be the case, for then that

part of the equation which involves fourth and higher differential

coefficients cannot be neglected, and it is well known that if that

part of the equation be sensible, different colours must be propagated
with different velocities ; hence if it be true, as it most probably is,
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that all colours are propagated with the same velocity in vacuum, the

particles of ether cannot exercise any sensible force at the distance X.

If this be correct, the explanation of the phenomenon of dispersion

by the hypothesis of finite intervals falls to the ground ; for if the

particles of ether in the interior of transparent bodies are placed at

intervals not extremely small compared with X, they must exercise

very little force upon each other, and therefore the ethereal medium
in the interior of transparent bodies must be almost devoid of elasticity,

which evidently cannot be the case. But even supposing the hypothesis
of finite intervals to be true, I may in the present investigation neg-
lect the terms of the equation involving fourth and higher differential

coefficients ;
for experiment shews that the dispersion of a ray is

small compared with the whole deviation produced by refraction; there-

fore these terms (if not quite insensible) must be small compared with

those involving second differential coefficients. Now it is not my
object to investigate that part of the dispersion (if there be any)
which arises from these terms, but that which arises from other terms;

namely, those introduced into the equations in consequence of the in-

fluence exerted by the particles of matter on those of ether; therefore,

in accordance with a well-known principle, I may neglect the former

terms in investigating the effect of the latter.

$13. Neglecting, then, the terms in the equation which involve

fourth and higher differential coefficients for the reasons just stated,

we have the following equations of motion for any particle of ether,

(writing down the two other equations for the motion parallel to the

axes of y and «;)

(d*a di

a\ .

'

d /dfi dy\^
m c?f dx-

*

\dif
r
dz2

)
"" "J dx \dy

m dt :
"

dy' \dx< dz*) ' dy \dx
+
dz)dy \dx< dz-) '

dy \dx dz)

m ~di>

= A
dtf

+ B
\d&

+
df)

+ {A " B) di \£ +
~dy

1

(C).
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These are the equations
* of motion of the etherial particles, omitting

the terms depending on the action of the material particles, conse-

quently these are the equations of motion of the ether as it exists in

vacuum.

$ 14. To compare the action of the material upon the etherial par-

ticles with what it would be if the former were absolutely fixed.

In the equation (2?) the part which arises from the action of the

material particles, i. e. the part under the sign 2, may be written

thus, putting for A a, A/3, A a, their values a,
—

a, /3 (

—
/3, <y,

-
7),

viz.

^m^cp(r')(u,
-

a) + ~.<p'(r')Ax\Ax(a
-

a) + Ay(/3,
-

/3) + A* (7,
- 7

)}J.

Now let a2 /32 72 be the greatest values which a, /3, yt respect-

ively admit of at the time t, and a3 /33 73 the least; then observing,

that a /3 7, a2 /32 72, a3 /33 73, may be brought outside the sign

2,, and that 2, m t

—
<j>' (r) Aa;Ay, and '2m

l

—
(p'(r')AxAx are zero in

consequence of the symmetry, it is manifest that the above expres-

sion lies between

(a2
-

a) 2m, U(r') + -,$' (r')AxA and (a3
-

a) 2m, (<p(r')
+ -,(p'(r') AxA ,

or between m
t C{ai

—
a) and m,C(a3

—
a),

if we assume C to denote ^U(r') + -^'(r')Af|.

Now in the case of common luminous waves passing through trans-

parent bodies, the particles of matter are put in motion solely by the

vibrations of the particles of ether : if we consider how extremely

* These equations are obtained by M. Cauchy in his Exercices, Vol. III. by a complicated

method, different from that made use of in the present paper. Mr. Green, also, has obtained

the same equations, in the Cambridge Philosophical Transactions, Vol. VII. Part 1. by a very

general but complicated method.
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large the masses of the former must be compared with those of the

latter*, it is evident that the motion of the former must be small com-

pared with that of the latter: hence, aa and a3 must in general be

small compared with «; and therefore m
t C(a,

—
«) and n^Cia-i

—
a)

must be nearly the same as - m
t Ca, and therefore, a fortiori, the

expression under the sign 2,, which we know always lies between

m^i^a* —
a) and m

t C{a3
—

a), must in general be nearly the same as

— m
t Ca, and this is evidently true, however small or large C may

be. Hence we are justified in proceeding upon the following suppo-

sition, viz., that the action of the particles of matter on that of ether

in the case of common luminous waves passing through transparent

bodies, is very little altered by the motion of the material particles ;

and that therefore in estimating that action we may suppose the par-
ticles of matter absolutely fixed for a first approximation.

§
15. Hence it appears, that the equations of motion of the etherial

particles, taking into account the action of the material particles upon them,

are as follows, at least for a first approximation.

1 d'a .d'a „ (d'a d*a\ . . „. d i d(Z dy\ m. „ .—
i,>

= A j - + B \j , + -J—) + (
i -- B) v- -f- + -f-\

' Cam df dx- \dy
% d%' I

s J dx \dy dx) m

1 rf/8 .d'$ D ld*fS d2

(S\ d (da dy z« „_

m df<
= A

dy
+B

{d^
+
-d¥)

+ (A-^Ty \dx-
+

ITy)

~
Tn
C^ U>>-

m df d% ! \dx- dy' !
J d% \dx dy) m '

where C = 2 \<p(r') + \(p'(r') Ax*}.

7ft Vfh Itl

The terms —i Ca, —-
C/3,

— Cy, which I have thus introduced intom mm'
the equations, lead to very remarkable results, as will appear presently.

§16. To shew that the law of molecular force is not likely to be

such as to make C zero in all cases.

* That this is the case, I think the very small resistance experienced by the heavenly

bodies from the ethereal medium seems to prove.
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In any system of particles arranged symmetrically, suppose that one

of the particles is slightly displaced from its position of rest, the others

remaining undisturbed ; then if we make use of the notation in Article

(1), putting a — 0, /3'
= 0, y = 0, and therefore $a = -

a, 5/3 = —
/3,

Sy = — y ; the forces which act on the particle parallel to the axes in

consequence of its displacement, are evidently
-

Co., —
C/3,

— Cy,

where C = Vm {/(r) + \f(r) $x*}.

Hence if the law of molecular force be such that C is zero in all

cases, it is evident that in a symmetrical system any particle may be

slightly disturbed from its position of rest, without bringing any force

into action upon it, i. e. the system is in neutral equilibrium*.

Now it is very improbable that substances in nature are so held

together, that a particle may be slightly displaced from its position of

rest without bringing any force into action upon it : therefore it is not

likely that the molecular force is of such a nature as to make C zero

in all cases.

If the system consist of two or more sets of different particles

exercising different kinds of molecular forces, the same is evidently

true; for then the forces which act on the particle parallel to the

axes, in consequence of its displacement, are — alC — /32C — ylC,

where

2C = {2m [f(r) + -f(r) Ja*] +X,», [0 (r,) 4- \ f'(r,) A<] + similar terms},

»

IS

Hence it is evident that the condition of stability of the equilibrium of the ether in vacuum

2{y(r)+ -y'(r)Sx*} = a positive quantity,

and in the interior of a transparent body

m 2 {/(r) + -f'(r) Sx*} + m
l
'Z

l { (p{r
f

) + —, <t>'(r
r
)
Ax*

}
= a positive quantity.

As in § 11, the condition of stability in vacuum may be put in the form

_/ 1 d(Rr*)\
I r3 ~d

—
I

= a P0Sltlve quantity,

R being the law of molecular force.
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which forces are evidently zero, if the law of molecular force be such

as make C zero in all cases.

If the law of molecular force be the inverse square of the distance

it is easy to see that C must be zero, no matter whether the force be

attractive or repulsive.

For suppose that the molecular force (i. e mrfir)) equals ± —
, then

„, ri $*»+v+&p)
-*2«.{p ;Z j.

Since Zmf{r)§a? = ^mf{r)ly* = 2mJ\r)8*

in consequence of the symmetry : and this last expression

= + ~2m
\p ^J

.

which is zero (observing that r does not become oo for any particle under

the sign 2, since the displaced particle is not included under the sign 2).

Hence C is zero if the molecular force be an attractive or repulsive

force varying inversely as the square of the distance ; and this is evidently

true no matter how many different kinds of particles compose the system.

Hence it is not likely that the molecular force is an attractive or repul-

sive force, varying inversely as the square of the distance.

There is therefore good reason for supposing that C is not zero in

the equations (D), and we shall accordingly proceed upon that sup-

position.

§ 17. I now proceed to prove two remarkable and very general

theorems respecting transverse and normal vibrations, by the help of which

the equations (Z)) may be reduced to very simple forms. I believe

that these theorems, at least the first of them, is capable of very important

applications.

Vol. VII. Paet III. 3 A
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$ 18. To shew that the condition of the vibrations being transversal is

da dfi dy _
dx dy d%

Let the equation to any surface in which all the particles are in the

same phase of vibration (i. e. any wave-surface) be

Fix, y, &,)
= u,

where it is a parameter which does not vary as long as x, y, as belong
to the same wave-surface, but is different for different wave-surfaces :

for example, if the wave-surface be spherical we may take u to represent

the radius, or if it be plane we may take u to represent the perpendicular

upon it from the origin. In the former case the above equation would

be

& + "if + z* — u">

and in the latter

px + qy + s% = u,

where p,. q, s, represent the cosines of the angles which the surface

makes with the co-ordinate planes. It is evident that in both these cases

u varies only when we pass from one wave-surface to another.

Now supposing that t is constant, the phase of vibration, or what

is the same thing, a, /3, 7 can vary only when u varies, hence a, (Z, y
must be functions of u and t only : moreover, we may suppose u and t

to alter in such a manner that the phase of vibration shall not alter, that

is* we may suppose that du and dt are so taken that da, dfi, dy are

each zero; hence, supposing du and dt thus taken, we have (remembering
that a, /3, 7 are functions of u and t alone).

da ,. da 1 „ ,_„
-r-dt + j- du = ... (1).
dt du

^* + g*.o... <*>.

%Jf'+ £W - ...
(3).



du du du
dx' dy' dz'
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Now -j- , -r-
, -j-,

are proportional to the cosines of the angles which

the normal to the wave-surface makes with the axes of x, y, z,

respectively ; also -rt , -£ » ~jI > are the velocities of any particle parallel

respectively to the axes of x, y, z
; if the vibrations be transversal, the

sum of these velocities resolved along the normal to the wave-surface

must be zero ; i. e. we must have

da du d& du dy du
_L. —LI J L ==

dt dx dt dy dt dz

hence we evidently obtain (multiplying (1), (2), (3) by

respectively and adding) the following equation,

da dfS dy
dx dy dz '

which is the condition of the vibrations being transversal.

$ 19. To shew that the conditions of the vibrations being normal,

are

da _ dfi dfi _ dy dy da

dy dx' dz
~
dy' dx

~
dz'

If the vibrations be normal, it is evident that we must have

vel. resolved parallel to axis of x _ cos angle made by normal and axis of #
do do y

~
do do y'

da du
dt dx

dfi

~
du'

dt dy

Hence we evidently have from the equations (1) and (2),

da_du _ dfi du da _ d(3

du dy du dx' dy dx '

and similarly we may prove that

— = — and dy = —
dz dy

' dx '
dz

'

3 A2
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§ 20. To adapt the equations (D) to the case of transversal

vibrations.

If the vibrations be transversal, we have by Article (18),

dji dy__da therefore A(M ±A d?a,

ay d% ax ax \dy d%! ar

hence the first of the equations (D) becomes

1 d'a . d*a „ (d*a d*a\ , . „, d'a m
i
„

mdF = A d^ + B {dt
+
d¥)

- {A - B) dtf-m Ca >

(d2a iPa

dtf

*•1 d'a „ /d'a d'a. d'a\ ni
t
„ x

' m dP
~

\dx%
dy* dz'l m

and similarly,

1 *0 nl^Ll^tl,^ Hhra
m df

- \& dtf
+

dz*J m ^p

1 ^z

GE).

which are the equations (Z>) adapted to the case of transversal vibrations.

Since the first of these equations does not contain /3 or y, nor the

second a or 7, nor the third a or /3, it is evident that each may be

integrated separately, and so a, (&, 7 may be found; which is a very

important simplification.

$
21. To adapt the equations (D) to the case of normal vibrations.

If the vibrations be normal, we have by Art. (19),

rf
2
/3 d_ (dji\ _c?

(da\ _dja , . .. . d2

y d-a

dxdy
~
dy \dxl

~
dy \dy) dy*'

^' dxdy
~~

d«"
*

and therefore ^ (_ +
-?)

= _ + _



1 d2a . ld2 a d 2 a d2a
\ m, „ >

0r' m ~dt
2
- A

[d?
+ W +

~d*)
~
m

(F),

IN THE INTERIOR OF TRANSPARENT BODIES. 417

Hence the equations (2>) evidently become

1 d*a . d°a _ (d
2 a d2 a\

'

. _. ld*a d2a\ m, -,

1 d2a M fd2 a d*a
.
dV

W
and similarly,

m dt2 \dx2

dy
2 dz2

1 m

m df \dxl r
ety*

+
«?*V «i V

which are the equations (D) adapted to the case of normal vibrations.

It is remarkable, that these equations should be of exactly the same

form as the equations (E), differing only in having A in the place B.

It is evident that the equations of vibratory motion cannot assume

the form

1 d2 a (d
2 a d2

(S d*y\

'

d'(3 . d°y
m-3f

= A
[d*

+
d?

+
d*)'

and similar exPressions for
-j?

and w>>
unless the vibrations be either altogether normal, or altogether transversal.

§ 22. To adapt the equations (E) to the case of plane waves.

The equation to the wave-surface in this case will be

pn + qy + sz = u.

When u is the perpendicular from the origin on the surface, and

p, q, s the cosines of the angles it makes with the co-ordinate planes,

and therefore p
2 + q

2 + s* = 1.

Now in this case, since a is a function of u and /, we have

da dadu da , ,, . d2a .di a

S"S3S^3S' andtherefore a?-*^
A • ,l d*a 4 C?

2 a d 2a d*a
and in the same manner, ——. = o* _— , -y~ = s"— ;

dy
1 * du2 dz" du*



418 Mb. O'BRIEN, ON THE PROPAGATION OF LUMINOUS WAVES

hence the first of the equations (F) becomes

1 d2a „ d"a m
t „ N

m df du2 m

and similarly,
— -rk = -o-r^ -CpJ m dt du* m
1 d 2

y d2

y
in

(G).

m df "*
du2

In exactly the same manner the equations (F) may be adapted to

the case of plane waves.

§
23. To adapt the equations (E) to the case of spherical waves.

The equation to the wave-surface in this case will be

x2 + y
2 + z

2 = w2
,

u being now the radius of the surface.

In this case, we have

da _ da du _ da X d2
a d2

a X2 da U2 — Xs

dx du dx du u' dx2 du2 u2 du

,..-,, d2a d2a y
2 da u2 — y*

and similarly, ^ = 3- ^ -

du2
«"

d2
a _ d2a Z*

dz2
=~

du2 u2 +

du w
da U2 -

J8
a

du u3

hence we have

d2a d2a d2a d2 a 2 da 1 d2

(ua)

dx2

dy
2 dz2 du2 u du u du2 '

hence the first of the equations (F) may evidently be put in the form,

m.1 d2

(ua) n d2

(ua)= Jom df du2 m Cua

j • -i i
1 d2

{u(S) ~d2

{u$) m
J „ Qand similarly,

-—^ = B -££* - —' Cu0m df du2 (H)-

1^ d^ity) = _ d2

(uy) _ m, Cum df
~

du2 m

* From these equations, if we obtain a a in the form f(u,t), we have a = -f{u,t),f{u,t),

being evidently the value of a for plane waves ; let a be the maximum value off(u, t), then



IN THE INTERIOR OF TRANSPARENT BODIES. 419

In exactly the same manner the equations {F) may be adapted to

the case of spherical waves.

§
25. From the results in Art. (22) we have for plane waves in

vacuum,

1 d2a . d'a j •
i P d*(i , d°y

r-r = A -y-B , and similar expressions for -rr , and —r-r ,m df dw r dv or

1 d"a n d2a , .. , d'fi , d2

ym~f mill era i-ir\ i lm< *"\-v nn/M>firtVin 4 ; \i* . . t . r\ *

when the vibrations are normal,

and —j— = B -=-= , and similar expressions for ^V^ . and ^-?
»» dtf du* r d/2

rf/
2

Hence it follows that transverse and normal vibrations are propa-

gated, in general, with different velocities, namely, \Z~A~ and */B
respectively.

§
26. If the medium be capable of transmitting transverse vibra-

tions only, we must have B > 0, A = 0, or < 0, and, of course, the

equilibrium stable. Or by § (11), and note
§ (16),

Hh
d

-T}>°--*- «^}-*-<. <*

and 2{i^3}>0 (3).

A number of laws of force might evidently be found satisfying these

conditions.

Two laws of force have been a good deal insisted upon, namely,
the inverse square, and the inverse fourth power : these conditions

shew that neither of these laws can hold (assuming the theory of

transversal vibrations) ;
for if R = ± —

,
—^—- = 0, and therefore (3) is

d( 7?Ti
\

not satisfied, the equilibrium is neutral: and again, if R= ± -j,
-—

-j
—— 0,

and therefore (1) is not satisfied, the velocity of transverse vibrations

is zero. Hence neither of these laws of force will answer.

2

- is the maximum value of a for spherical waves ; and therefore -j , the intensity of light

diverging from a point, which therefore varies as (distance)"'.
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If the theory of transverse vibrations be true, R cannot = - —
, for

then B is < 0. Hence, even waiving the objection of neutral equilibrium,

a repulsive molecular force varying as (dist.)~* is inadmissable. As to

an attractive molecular force varying as (dist.)
-2

, it is clearly out of the

question, for particles held together by such a force could not possibly

vibrate. It appears to me that these considerations are decisive against

the Newtonian Law, unless we abandon the theory of transversal

vibrations.

$ 27. Having thus arrived at the necessary equations, I now pro-

ceed to make use of them for the purpose of explaining the dispersion

of light in passing through a prism.

§
28. To shew that, in consequence of the action of the material

upon the ethereal particles, different colours must be propagated with

different velocities in transparent bodies, supposing the particles to vibrate

according to the cycloidal law.

Let us take the case of plane waves of transversal vibrations ; the

equations to be used in this case are the equations (G).

Suppose the particles to vibrate according to the cycloidal law ; and

accordingly put for a the well-known form, a sin—— (vt — u), and similar
A

values for /3 and 7, and we find by substitution in the above equations,

4tt
2
v

2
4tt

2

w m, „— ——- —
2

-ti C
\

X m X m

and therefore v* = mB + -~r X2
;

47T

which shews that the velocity of propagation in general depends on

the length of the wave. In vacuum however C = 0, and therefore

the velocity of propagation does not depend on the length of the wave.

Hence the direct action of the particles of matter must produce an

alteration in the velocity of light depending on the length of the

wave, unless we admit the supposition that C is zero, which, as I have

shewn, is most improbable. I need not shew that the consequence of
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the relation thus established between v and X will be the dispersion of

light; but it is very important to inquire whether the dispersion that

would be produced by this relation, if true, follows the same law as

that which really takes place.

In the above formula as \ increases v increases (supposing C positive),

and therefore the index of refraction ^ (which varies as
-)

diminishes:

now as we pass from the violet to the red rays we know that \ increases,

hence our formula for v gives an index of refraction diminishing as we

pass from violet to red
;
and so far it agrees with experiment. If C

be negative, of course the reverse is the case ; it is easy to see that Cs

being positive or negative depends on the law of force, and that there

are a variety of different laws which will make it positive. (See § 26).

§ 29- To estimate what effect the motion of the material particles

has upon the velocity of propagation.

To do this, we must add to the equations (2?) in Article (6) the

equations of motion of the material particles, which, if we denote the

force of one particle of matter on another by m
l r, ^ (/",),

will evidently be

+ 'Em\(p{r')Aai
+ -<p'(r) A a?, (A a?,

A a, + A^Aft + A* A7,)l

and similar expressions for ~~ and -~!j
%

(-»,)•

Now it is easy to see that the six equations (B) and (St) may be

satisfied by assuming
o = a cos k (vt

—
u), /3 =£cos k(vt— it), y = c cos k (vt—u),

a^a^oskivt—u), fit

= b
t cosk(i)t

—
u), y = c

/cosk{vt-u/ ),

where u =px + qy + r%, u, =pxi
+ qyt

+ r%,, and a b c, a, bt
c

t , are dis-

posable constants, which we may determine so that the vibrations of the

particles shall be wholly transversal : this will appear by substituting
as follows these values for a /3 y, a, /3, 7,, and supposing the vibrations

transversal.

Vol. VII. Part III. SB
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When the vibrations are transversal and the waves plane, the part

of the equation (B) under the sign 2 reduces to the form mB-^,
as appears from Articles (20) and (22) ; hence, if we put for a the assumed

value a cos k(vt — u), it appears that the part of the equation (B) under

the sign 2 reduces to the form - m Bk*a cos Jc (vt
-

u).

To reduce the part vinder the sign S put for a moment

a,
— a (or A a) = a,

— a 2 + a2
-

a, where a2
=

a, COS k (vt — w),

= Aa2 + a2
—

a, and similar expressions for A/3 A 7,

and it becomes (since a2
—

a, /38
-

/3, 72—7 may be brought outside 2
)

;£(» -a) +
2,»i,{0(r')

Aa2 + -
<£'(r')A#(A#Aa2 + AyA/32 + AxA72)>,

the part of this expression under the sign 2 is exactly similar to that

we have just reduced, having 2
/9
m

lf <j>,
r' , Ax, Ay, Ass, Aa2 , A/32 , A 72, in-

stead of 2, m,f, r, hx, §y, Sz, 8a, 5/3, §y respectively; hence it must in the

same manner reduce to the form

— m^' k2a
t
cos k (vt u),

where B' =
1 2,U (/) Ax* + -, (p'ir^AtfAfl .

Hence, when we have substituted the assumed values of a, /3, 7, a
ti

(St , y t , in the equation B, supposing the vibration transversal, we obtain

this result [dividing out cos k(vt — u)] viz:

— &Va = - mBk*a + m
l C(ai

—
a) —ml

B'k'ia
i (1);

and if we substitute in the same manner in the equations for -~ and

d2
y

-gny-,
we obtain precisely the same result.

Treating the equations {B) in a similar manner we obtain a similar

result, namely,
- &Va,= - m

t
B

t
k2a

t
+ mC (a - «,) -mB'tfa (2),

where B, = |
2
{^

(r^xf +
£ f (fj **,%/! .
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Now by giving proper values to v* and — in (1) and (2), we may

satisfy both these equations, and consequently the six equations of

motion; hence the assumed values of a, /3, 7, a
t , /3,, 7,, satisfy the

equations of motion provided the vibrations be transversal, and v* and

—' be so assumed as to satisfy (1) and (2).

It is evident from the same reasoning as that employed in Art. 12.,

that B'k2
is small compared with C, also by Art. 14., a, is small com-

pared with a; hence, for a first approximation, omitting the terms

»»Cff,, and m,ITPa4 ,
we obtain from the equation (1),

v2 = B + —'

7
-

(k
= —-

,m k2
\ X /

which is the result previously obtained.

For a second approximation we must retain the term m^Ca,, but

we may omit m^'Tia,, and mB'k2
a, in (1) and (2), and then we have

Ita = '-^ (a - a),v2 — mB "

subtracting the second of these equations from the first, and dividing
out a — a

t,
we find

X2 v2 — mB v l - in
i
B

i

which is the same relation between v and X as that which I obtained

in the Philosophical Magazine, for March 1842, by a different method.

A third approximation may be easily obtained by retaining the last

terms of (1) and (2) and eliminating
—

, which will give a still more
tt

exact relation between v and X.

§
30. If C = 0, k8 divides out of (1) and (2), and therefore the

velocity of propagation has no dependance on the length of the wave.

3 B2
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Hence it appears, that the mere motion of the particles of matter cannot

produce any dispersion of light.

£ 31. On account of the smallness of m compared with m
t , it is

evident that the second term of the expression for A* in equation (3) is

small compared with the first. This confirms what was said in Art. 14.,

that the motion of the material particles cannot produce much effect

on the motion of the etherial particles.

§
32. I now proceed to shew that there is another cause capable of

producing dispersion, which is in no way dependent on the supposition

that white light consists of undulations of different lengths.

$
33. To shew that the velocity of propagation is uniform only when

the particles of ether vibrate according to the cycloidal law.

It is evident that if we suppose a to remain invariable, we have

da , , da ,

-y-dt + -y-du = 0,
dt du

and the value of -j? obtained from this equation is the velocity of pro-

pagation: let us suppose it constant and denote it by v, then we have

da da , d'a d2a d f da\ d2a
J

dt
~

du' dP
~

du dt du \ du)
'

du

hence the equations (G) become

(v>-mB)^+m,C=0,
and two similar equations for /3 and 7.

It is clear that if we combine this equation with the equation

dt 1

~ V
du2 '

the most general value which a admits of is

a = COS & (vt — U — e) + d COS k{vt + U -
e'),

when a, h, e, e' are arbitrary constants, and

/f2
_ m

,
c"

v*-mB'
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now this value of a shews that the particles vibrate according to the

cycloidal law. Hence it follows, that if the velocity of propagation be

constant, the particles of ether must vibrate according to the cycloidal

law. This conclusion is also true, if we account for dispersion by means

of M. Cauchy's hypothesis of finite intervals, neglecting the action of

the material upon the etherial particles; for then we shall have an

equation of the form

da
a _ d2a „ d'a

dF
= mB

drf
+mB d* :

treating this equation in the same manner as we have just treated the

equations

cPa -n d'a „
-j^r = mB-rr - mta,dP du<

we may arrive at the same result as that just obtained.

§ 34. If we consider the manner in which light may be produced

by combustion, I think it is not very likely that the particles always

vibrate according to the cycloidal law. Let us, for example, take the

case of oxygen and hydrogen, and suppose the two gases mixed to-

gether in the proper proportion to form water. They will remain in a

state of stable equilibrium* so long as we keep the temperature below

a certain point, but if we raise the temperature above that point, the

equilibrium will become unstable, and on the slightest disturbance the

particles will rush together to assume new positions of equilibrium.

Now they will evidently be unable to assume their positions of equi-

librium immediately, but will as it were shoot beyond them, and oscillate

backwards and forwards for a little time before they come to rest, the

consequence of this will be, that an oscillatory motion will be com-

municated to the etherial particles which surround them, and it may be

in this manner that waves of light are produced. Now it is clear, that

the material particles will in general communicate their own peculiar

kind of vibration, whatever that may be, to the etherial particles, and

• I speak here of chemical forces, on the supposition that they are the same in kind as

common forces, for if this supposition be not true, the results arrived at in the present

paper, and all similar results depending upon molecular action, are useless.
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the nature of that vibration will depend upon the law of force which

acts upon the material particles, and causes them to rush together;

that this law should be always such as to produce cycloidal vibrations

we have not the least reason to suppose ;
on the contrary, I conceive it

very probable that these vibrations will follow different laws in different

kinds of combustion.

Hence we must not assume a priori that light is always propagated
with a constant velocity in transparent bodies ; for I have proved that if

the velocity be constant, the particles must necessarily vibrate according

to the cycloidal law. What the velocity of propagation is, must de-

pend on the law of vibration; I hope hereafter to investigate the con-

nexion between them. At present I shall only explain generally the

effect of a variable velocity of propagation on the refraction of light

at a plane surface, and shew that it must cause a dispersion of homo-

geneous light in passing through a prism.

§ 35. To determine the law of refraction at a plane surface, without

assuming that the velocity qf propagation is constant.

Let A be an origin of light, MBB a plane refracting surface

bounding two different media,

ABC the course of an elementary
disturbance originating at A ;

i. e. a spherical wave is supposed
to spread from A, an element of

which takes the course AB, pro-

duces a disturbance at B which

spreads in a spherical wave from

B into the lower medium, an

element of which takes the course

BC. Let ABC be the neigh-

bouring course of a similar ele-

mentary disturbance which comes

from A to C. Take AE = AB, BD — BC, then a disturbance takes

the same time to travel from A to B, and from A to E, and ultimately



IN THE INTERIOR OF TRANSPARENT BODIES. 427

the same time to travel from B to D, and from B' to C, for the

paths BD and B'C become ultimately similar in all circumstances when
BB' is indefinitely diminished; hence, if t be the time in which a

disturbance travels over the path ABC, r + time of describing EB'
— time of describing DC will be the time in which a disturbance

travels over the course AB'C; now if v be the velocity of propagation
of a wave spreading from A when it arrives at B, v the velocity of

propagation of a wave spreading from B when it arrives at C, it is

evident that we have ultimately,

time of describing EB' = = ™,

. , ... nri DC BC'-BC 3zsin0time of describing DC = —p- = ;

—
.
— = —*-

,

where and
<p'

are the angles made by AB and BC respectively with

the perpendicular to the refracting surface MBB',

and % = MB, in = BB'.

Hence the time in which a disturbance travels over the course AB'C
is ultimately

t /rinj> _ rings
\ e v J

and therefore 3x =
[

£ ^-1 ^ss.
v » » y

If we suppose ABB' to be a small pencil originating at ^4, we de-

termine its direction after refraction by putting St — independently of

3« (by a well-known principle in Physical Optics): hence the law of
refraction of a small pencil is expressed by the formula,

sin
cp sin

<p'

v v

and this does not suppose that v or v' is constant.
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§ 36. In like manner it is easy to shew that if there be two plane

refracting surfaces, MB, MC, forming a a^

prism, and if r denote the time in

which a disturbance travels from A to

D by the path ABCD, (p, £ the an-

gles which AB and BC make with

the perpendicular to MB, and
\}s, ^'

those which CD and BC make with

the perpendicular to MC, MB = z

MC = s&
; then we have

/sin \|/ sin
\|/

**',

where fl is the velocity at B, v at C, and »" at D.

Hence, to determine the course of a ray, we have, (putting St =

independently of tz and oz')

sin sin 0' sin >// sin
\|
/ _

S 37. I shall now apply these formula? to determine 4he course of a

homogeneous ray passing from vacuum into a prism and emerging into

vacuum again.

In such a case v is constant, and v" = v, and we have

sin <p
= — sin ,

t?

sin 4r * -j sin 4r .

v

and the common equation <p' + \j,'
= i, i being the angle of the prism.

v is in general a function of BC and the time t, for it is the velocity

of propagation of a spherical wave originating at B when it arrives

at C, which I have shewn to be variable except when the vibrations

are cycloidal ; also BC — zs\m
j7-; hence —

,
is a function of d> and t:

cos (i
—

<p)' v'
r '

let us therefore put —
=f(<p't). It is evident that in general f is a re-
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curring function both of
cf>

and t ;
for — = du

da
di

, see Art. (33); hence,

1)

since a is a recurring function of u and t,
— must be so also (at least

z sin i
in general), and therefore, since u = BC =

;-; -, flA't) must be a°
cos (i

-
yt)

r *T '

recurring function of
<p'

and t: the increments of
<j>'

and £ which make

f(<p't) recur being of course extremely small.

The form of the function f depends on the law of vibration, if we
knew f we could determine the course of the ray from the two equations

sin =/(£'*) sin 0' (1),

.(2),

sin <p _ sin
<p'

sin
\J/

—
sin (»

—
<£')

""

the second equation being obtained from the two first equations at

the commencement of this Article, substituting for >// its value i —
(f>.

Without knowing the form off we may conclude from its periodical

nature that the equation (1) is satisfied by several different values of <f>,

supposing <p given*, (supposing also for a moment that t is constant,)

and then from the equation (2) we may obtain a set of corresponding
values of

>//.

Hence it follows, that a single homogeneous ray incident on a prism

emerges in several different directions at a given instant.

* This will appear immediately if we construct a curve in which the abscissa AM=.<f>,
and its ordinate MP =

<p.

It is evident that the locus of P will be some

such undulating curve as is represented in the figure.

If, therefore, we give <p one particular value AQ,
and draw QS parallel to AM in order to determine

the corresponding value or values of
<p', we shall ob-

tain several different values of
<j>.

Vol. VII. Paet III. 3C
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If therefore the emergent light be received on a screen, several spots

of light, forming a line of light, will be seen instead of a single spot

of light.

I believe that in general these spots will be too close together for

the eye to perceive them distinct from each other, therefore nothing
but a line of light will be seen. But these spots will in many cases

lie closer together in some parts of the line than at others, and, con-

sequently, a variation of the intensity of the light along the line, more

or less considerable, will be perceptible.

In what has been said t has been supposed constant : it is easy to

see what the effect of the variation of / will be ; the values of
<p'

which

satisfy the equation (1) will suffer an extremely small periodical variation

as t increases ;
for if we add to t any small increment less than that

which causesf to recur, then we may add to
<p'

another small increment

less than that which causes,/ to recur, just sufficient to leave f((p't) un-

altered, and at the same time not to make any sensible change in sin
<£',

(for the increment which makesf recur cannot produce any sensible change
in

<p'),
and thus the equation (1) will still be satisfied; which shews that

as t increases the values of
<p'

which satisfy (1) suffer an extremely small

periodical variation, going through all values, when t increases by that

increment which makes f recur.

Hence the spots on the screen will perform extremely small and

rapid oscillations; this will only spread them into minute lines of im-

perceptible length. Hence it is evident that the variation of t will pro-
duce no sensible alteration in the emergent light.

That the variation of the intensity of light along the line on the

screen, taking into account the mixture of different colours, will in

many cases be sufficient to produce the appearance of decided inter-

ruptions, I hope to shew in a future paper.

What has been said is sufficient, I think, to prove that if the vibra-

tions be not cycloidal, there must be a dispersion of homogeneous light

in passing through a prism.
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§
38. We may find the extent of this dispersion as follows :

Let m' be the greatest value of f{<p't), and let 0, and t
t
be the values

of 0' and / which satisfy the equations

sin -/(ft*,) sin ft, /<#*,) = m„

then 0, is an angle at which light emerges at the time t; also, it is the

least angle ;
for suppose 0, to be diminished by any quantity, then sin

<p t

is diminished, and f(<p,t) is not increased, since it is the greatest value

of /(fttf); therefore f{<p,t,) sin ft is made less than sin 0, and consequently,
no value of 0' less than ft will satisfy the equation (1) at the time t.

Hence if we put ft in the equation (2) and find the corresponding value of

>\f (ft suppose), ft will be the least angle at which light emerges at the

time t
t , and it may be considered the least angle at any other time,

since, as we have seen, the variation of t does not produce any percep-
tible change in the values of ft which satisfy (1).

Hence the equations

. . . . sin sin
sin = m, sin , -.—2_ = _— r,—Y ' r''

sin ft sin {i
-

ft)
'

will give us ft, the least angle at which the light emerges from the prism.

In the same manner it may be proved that if ^ be the least value

of f{<p,t), and ft be obtained from the equations

sin sin 2
sin = Ms sin ft, -.—f-

= .
y ^ ,r r

sin
\//a sin (a

-
2)

ft will be the greatest angle at which the light emerges from the prism.

Thus we may obtain ft -
ft, which will be the whole dispersion

produced by the prism in a homogeneous ray. As hi
— m2 is small, we

easily obtain the following value of 2
—

t by the common method, viz.

* rh
Sln

j ( V

^-^-cosftcosftk
1 ""2) -

By this formula if we knew the value of /*,
— ^ we might find the

dispersion 0,
—

2 of a homogeneous ray ; and vice versa, if we determine

ft
—

0a by experiment, we shall then know /u,
- m8 , i.e. the difference

3c2
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V
*

between the greatest and least values of -
, and therefore the whole

amount of the variation of the velocity of light within the prism.

£ 39. I am not aware whether any experiments have been made
which would enable us to determine

(p,
—

(j>2
. Any analysis of the

spectrum by second prism is inconclusive on this point, as I shall endeavour

to prove hereafter. I suppose that delicate experiments on the inter-

ference of a very small portion of the light composing a very pure spec-

trum, would enable us to determine whether 0,
—

<p2 has any sensible

magnitude or not.

The remarkable appearances exhibited when the spectrum is viewed

through coloured glasses, seem to indicate pretty clearly that homo-

geneous light suffers dispersion in passing through a prism.

If experiment shews that 0,
—

<p2 is insensible, then we have positive

proof that the law of vibration is cycloidal, which is a most important
result if true, especially if we bear in mind what has been just proved,

namely, that otherwise v must be variable. But if experiment shews

that
(p,

-
<f>2

has any magnitude, then we have to take into account the

variation of v in all cases of refraction ; and the fact, that the law of

vibration is not cycloidal.

£
40. It remains now to prove, that the results thus obtained on

the hypothesis of symmetrical arrangement are equally true when the

arrangement is unsymmetrical, in consequence of the position of equi-

librium of the etherial particles being altered by the action of the

material particles ; supposing that several etherial surround each material

particle.

It is evident that the equation expanded in
§ (8), now becomes a

linear equation with variable coefficients, in the form

— = P— + Q~ B— S— - Ca
dt dx dy

" "
dx dx2

where P, Q ... R ... S ... C, are functions of x, y, %, is evidently the

same for all particles similarly situated with respect to the particles of
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matter : hence, P, Q, R, S, C recur when we pass from one particle to

another similarly situated with respect to the particles of matters.

$
41. It will be necessary to recur to the original equations (B),

in which I shall suppose the particles of matter fixed, and therefore

«,
= 0, $ym 0, 7/

= 0.

Let us put a = a + e, /3
=

/3 + »/, 7 = 7 + £; when, a, ft, 7 are

displacements, such as constitute a common wave of light in vacuum,

and e, tj, £ the quantities to be added to them in order to satisfy the

equations (B). Then, denoting the second member of (2?) by F(a ft 7),

we have

w+£»wfl +*<••.&

Now since a ft 7 are displacements, such as constitute a common

wave of light in vacuum, we may expand F (a ft 7) as in
$ (8),

neglecting all above second differential coefficients. In the part retained

the differential coefficients will be multiplied not by constant quantities,

but by periodical coefficients, functions of # y %, which recur in the man-

ner just described. Let Fx (a ft 7) be the value of F (a ft 7), when we

put for these coefficients their mean values, and let Fz (a /3 7) be the

value of F(a (3 7), when we omit the mean part of each coefficient,

and retain only its periodical part,

then, F(a p 7) = Fl (o ft 7) + F2 (a ft 7).

In F, (a ft 7) the differential coefficients are multiplied by constant quan-

tities
;
and in Fs (a ~ft 7) they are multiplied by periodical functions which

go through all their values when we pass from one particle of matter

to another similarly situated with respect to the particles of matter, and

whose mean values are zero.

Substituting this value of F (a ft 7), the equations {B) become

^ + ^ = FCafty) + F2 (afty) + F(ev 0,

and similar equations with reference to the axes of y and x.
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Now let us assume, as we evidently may, that

5f-*w*
and similar expressions for -y—-, -^

(M),

and then we shall have

a„dstaihr eXpressio»s for ^,gj
(iV).

The equations (iW) being linear differential equations with constant

coefficients, similar to the equations (D), in § (15), we may deduce

values of a /3 7 from them similar to those of a /3 y obtained in the

previous part of this paper. It is easy to see that F
x (a (1 y) is of exactly

the same form as the second members of the equations (D), differing

only in having different values of A, B, and C.

The equations (N) are the same as the equations (J3), having the

term F2 (a /3 7) added to the first, and similar terms to the other two,

and having e »; £ in place of « /3 7.

I shall now shew that these equations are satisfied by such values

of e tj £, that a /3 7 are the mean values of a /3 7.

To make myself better understood, I shall suppose the material par-

ticles to be placed at the corners of cubes, and call the set of etherial

particles which lie in the cube formed by any eight contiguous particles

of matter, a cluster of particles.

Then, in a state of equilibrium, it is evident that the particles which

compose any cluster are arranged symmetrically with respect to the middle

point of their cube. Moreover, in any two clusters the arrangement of

the particles is the same in all respects, so that one cluster is perfectly

similar to another.
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§ 42. To shew from the nature of the case, that the equations of motion

(B) are satisfied by values of a (Z y, whose mean values for all the particles

in any cluster are zero, and the same is true when we add to these equations

any terms whose mean values for any cluster are zero, and which are the

same, or not sensibly different, for similar particles in any two clusters within

the sphere of mutual action.

Conceive the particles of each cluster to be placed a little out of

their positions of equilibrium, in such a manner that each cluster is

still symmetrically arranged with respect to the center of its cube, and

that all the clusters are still perfectly similar to each other
; then it

is evident, that if the particles be let go, an oscillatory motion will take

place (supposing the equilibrium stable), such that each cluster is always

symmetrically arranged with respect to the center of its cube, and all

the clusters are always perfectly similar to each other.

Hence we may conclude that the equations of motion (2?) are satis-

fied by such values of a y3 7, that the center of gravity of each cluster

has no motion ; i.e. that the mean values of a /3 7 for all the particles

in any cluster are zero.

The same is true if we add to the second members of the three

equations (JB) any terms being functions of x, y, %, t, whose mean

values for all the particles of any cluster are zero, and which are the

same for similar particles in any two clusters within the sphere of

mutual action.

This is evident from the fact that the terms represent forces which

clearly have no effect on the center of gravity of any cluster, and which,

being the same for similar particles in any two clusters within the

sphere of mutual action, do not derange the similarity of the motion

in these two clusters.

It is only necessary that these terms should be the same for similar

particles in any two clusters within the sphere of mutual action : hence

if there be a very gradual alteration in these terms as we pass from

cluster to cluster, so gradual as not to be perceptible within the sphere
of mutual action, it is still true that the equations are satisfied by
such values of a j3 7, the mean values of which for any cluster are zero.
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§ 43. Now it is evident that in the quantity F2 (afiy), ajiy vary

very slowly indeed as we pass from cluster to cluster, for a /3 7 are

displacements which constitute a common wave of light in vacuum, and

the length of a wave in vacuum must be very large compared with

the intervals between the particles of matter, and therefore the vari-

ation of a /3 7 must be extremely small when we pass over a distance

equal to the interval between two particles of matter.

Moreover, the coefficients in Fz (a /3 7) are periodical quantities whose

mean values for . any cluster are zero. Hence, F2 (« /3 7) is a quantity

whose mean value for any cluster is zero, and in which the alteration

is very gradual as we pass from cluster to cluster, and not perceptible

within the sphere of mutual action, (remembering that the sphere of

mutual action must be extremely small compared with the length of

a wave in vacuum.)

Therefore, if to the first of the equations of motion (B) we add

the terms F2 (a fS 7), and similar terms to the other two, the equations
so formed will be satisfied by values of a /3 7, whose mean values for

any cluster are zero. And therefore the equations (N) (which only
differ from such equations in having e n £ instead of a fi 7,) are satis-

fied by values of ev^ whose mean values for any cluster are zero.

§ 44. Now if the mean values of e tj £ for any cluster be zero,

it is evident that a (Z 7 are the mean values of a/37. Hence it appears

that the mean values of a /3 7 may be obtained by expanding the equa-

tions (B), as in § (8), neglecting all terms involving differential co-

efficients above the second, and putting for the coefficients of the retained

terms their mean values; which process will lead to equations exactly

the same in form as those in § (15).

Hence, every thing that has been proved in the previous part of the

paper respecting a /3 7, on the supposition of perfect symmetry, is also true

of the mean values of ajiy for any cluster when the symmetry is dis-

turbed, as it must be, by the action of the material particles.
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§ 45. It is evident that a j3 7 represent a wave, or system of waves,

regularly transmitted through the ether composing the common refracted

light : but e t) £ represent a disturbance of quite a different character,

propagated with a very slow velocity, and therefore such as makes each

cluster (at least, those at or near the bounding surfaces of the transparent

body,) an origin of waves spreading into vacuum as if from a point,

so that the bounding surfaces will appear to produce light, in the same

manner as luminous surfaces.

That the natural colours of bodies, and the absorption of light by
coloured media, are the effects of these waves, I hope to shew in a future

paper in the following manner, viz. I shall prove that the intensity of

the waves represented by e
>? £ depends on the length of the waves

represented by a J3 7 ;
and then, that the intensity of the latter waves

depends in general upon the intensity of the former, and thus I shall

establish a relation between the intensity of light transmitted through a

medium and the length of the wave, such a relation as, I believe, is

capable of accounting for the apparently irregular manner in which

absorption takes place.
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XXIII. On the Steady Motion of Incompressible Fluids. By G. G.

Stokes, B. A. Fellow of Pembroke College.

[Read April 25, 1842.]

In this paper I shall consider chiefly the steady motion of fluids

in two dimensions. As however in the more general case of motion

in three dimensions, as well as in this, the calculation is simplified when
udx + vdy 4- wd% is an exact differential, I shall first consider a class

of cases where this is true. I need not explain the notation, except
where it may be new, or liable to be mistaken.

To prove that udx + vdy + wd% is an exact differential, in the case

of steady motion, when the lines of motion are open curves, and when
the fluid in motion has come from an expanse of fluid of indefinite

extent, and where, at an indefinite distance, the velocity is indefinitely

small, and the pressure indefinitely near to what it would be if there

were no motion.

By integrating along a line of motion, it is well known that we get
the equation

£ = V- \{u- + v* + w*) + C.... (1),

where dV = Xdx + Ydy + Zd%, which I suppose an exact differential.

Now from the way in which this equation is obtained, it appears that

C need only be constant for the same line of motion, and therefore in

general will be a function of the parameter of a line of motion. I shall

first shew that in the case considered C is absolutely constant, and then

that whenever it is, udx + vdy + wdz is an exact differential.

To determine the value of C for any particular line of motion, it

is sufficient to know the values of p, and of the whole velocity, at

3D2



440 Mr STOKES, ON THE STEADY MOTION

any point along that line. Now if there were no motion we should

have

£ = v+ c (2),
p

p x being the pressure in that case. But considering a point in this

line at an indefinite distance in the expanse, the value of p at that point

will be indefinitely nearly equal to pu and the velocity will be indefinitely

small. Consequently C is more nearly equal to d than any assignable

quantity : therefore C is equal to Ct ;
and this whatever be the line

of motion considered ; therefore C is constant.

In ordinary cases of steady motion, when the fluid flows in open

curves, it does come from such an expanse of fluid. It is conceivable

that there should be only a canal of fluid in this expanse in motion,

the rest being at rest, in which case the velocity at an indefinite distance

might not be indefinitely small. But experiment shews that this is

not the case, but that the fluid flows in from all sides. Consequently

at an indefinite distance the velocity is indefinitely small, and it seems

evident that in that case the pressure must be indefinitely near to what

it would be if there were no motion.

Differentiating therefore (1) with respect to x, we get

1 dp v du dv dw

p dx dx ax dx

. 1 dp v du du du
but -

-/-
= A —

u-j v
-j

»T ;

p dx dx dy dz

/dv du\ (dw du\
whence v -3 ti + w

\ j t) — °-
\dx dyi \dx d%l

a- -i 1 (dw dv\
, (du dv\

Similarly, w
(^

-
jgj

+ u
(^

- ^ j

= 0,

/du dw\ (dv dw\
u
(di-dx-)

+v
\d-% -«£•]-*'

dv du dw dv du _ dw
whence

Tx
=

Ty
,

jj
-
ft, di'dx'

and therefore udx + vdy + wdz is an exact differential.
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When udx + vdy -rivdz is an exact differential, equation (1) may be

deduced in another way*, from which it appears that C is constant.

Consequently, in any case, udx + vdy + wdz is, or is not, an exact

differential, according as C is, or is not, constant.

Steady Motion in Two Dimensions.

I shall first consider the more simple case, where udx + vdy is an

exact differential. In this case u and v are given by the equations
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The integral of this equation may be put under different forms. By
integrating according to the general method, we get

U = F(x + \Z~^ly) + f(x - V~\y).

Now it will be easily seen that U must be wholly real for all values

of x and y, at least within certain limits. But F(a) may be put
under the form Fx (a) + s/~^\ F2 (a), where Fx (a) and F» (a) are wholly
real. Making this substitution in the value of U, we get a result,

which, without losing generality, may be put under the form

U = F(x + y/^ly) +F(x - \/^ly)

+ v^T \f(x + s/-Tl|0 -f(x -
n/^IjOI.

changing the functions.

If we develope these functions in series ascending according to integral

powers of x, by Taylor's Theorem, which can always be done as long
as the origin is arbitrary, we get a series which I shall write for

shortness,

u = 2cos [ry *) ^(y) - 2 sin

(a$
x
)f^>

the same result as if we had integrated at once by series by Maclaurin's

Theorem.

It has been proved that the general integral of (5) may be put under

the form

where a* + /3
s = 0. Consequently a and /3 must be, one real, the other

imaginary, or both partly real and partly imaginary. Putting then

a = c^ + y/— Ifbi =
/3, + s/ — 1 /38 , introducing the condition that

a + /3'

2 = 0, and replacing imaginary exponentials by sines and cOsines,

we find that the most general value of U is of the form

U = 2^ 6
" (c0Sl'x - sinw +o)

. cos n (sin yx + cos yy + b),

where A, n, y, a and b have any real values, the value of U being

supposed to be real.
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If we take the value of U,

U - 2 cos
(^ *) F(y) - 2 sin [~ x)

f(y),

and develope each term, such as ay*, in F{y) or y(y), in a series, and

then sum the series by the formula

cos n9 + \/— 1 sin nd = cos"0
(l

+ r \/ - 1 tan 6 -
....)

,

we find that the general value of U takes the form

U = lAr" cos (nB + _B).

As long as the origin of y is arbitrary, only integral powers of y
will enter into the development Of F(y) and f(y), and therefore the

above series will contain only integral values of n. For particular

positions of the origin however, fractional powers may enter. The

equation

d*U 1 dU 1 d*U
dr8 r c?r r1

dff*

which (5) becomes when transferred to polar co-ordinates, is satisfied

by the above value of U, whatever n be, even if it be imaginary, in

which case the value of U takes the form

U =. ^Arm
e
n0 cos (mO - loge

r" + B).

We may employ equation (5), to determine whether a proposed system
of lines can be a system in which fluid can move, the motion being of

the kind for which udx + vdy is an exact differential.

Let f(x,y) = U\ = C be the equation to the system, C being the

parameter. Then, if the motion be possible, some value of U which

satisfies (5) must be constant for all values of x and y for which Ut
is

constant. Consequently this value must be a function of Ux . Let it

= (piUi). Then, substituting this value in (5), and performing the

differentiations, we get
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* ^ifo?) +
\-dfi J

+ *^Uf + Wi = °'

f ([/,) rf^
+

rfy _
^'(t/-,) /^'x ffiy+

Now, if the motion be possible, the second term of this equation
must be a function of £7, ; #, # and f7, being connected by the equation

«/*(#> y)
= E7i. Consequently, if by means of this latter equation we

eliminate x or y from the second term of (6), the other must disappear.

If it does not, the motion is impossible; if it does, the integration of

equation (6), in which the variables are separated, will give <p(Ut) under

the form

cj>(Ui )
= AF(U1)+ B,

A and JB being the arbitrary constants. The values of u and v will

immediately be got by differentiation, and then p will be known.

Nothing will be left arbitrary but a constant multiplying the values

of u and v, and another added to the value of p.

I shall mention a few examples. Let U = ar% cos \ 8. In this case

the lines of motion are similar parabolas about the same focus. The

velocity at any point varies inversely as the square root of the distance

from the focus.

Again, let U = axy. In this case the lines of motion are rectan-

gular hyperbolas about the same asymptotes. Also,

dU , dU
u = -j— = ax, and v = *- = — ay.

dy dx *

In this case therefore the velocity varies as the distance from the centre,

and the particles in a section parallel to either of the axes remain in

a section parallel to that axis.

I shall now consider the general case, where udx + vdy need not

be an exact differential.
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In this case p, u and v, are given by the equations

1 dp du du _-

p dX
=X- U dx- V

dy
W'

1 dp -T dv dv-

P dj
= ¥- UTX - V

dy>
<8 >'

du dv n ..

dl*
+
Ty

=
(*>'

We still have
-^

= -
, for the differential equation to a line of motion,

where udy - vdx is still an exact differential, on account of equation (9).

Eliminating p by differentiation from (7) and (8), and expressing the

result in terms of U, we get the equation which U is to satisfy, viz.

dU d td*U d2U\ dUd^(d*U d*U\

dy dx \d& dtf) dx dy (dx1
+

dtp)
==

'

, , . (dU d dU d\ td*U d2

U\
or, for shortness

(^
_ - __)(_+_) =

(10).

In this case, since p =
(-£.dx f J^dy), equations (7) and (8) give

P V- fUdU d* U dUd*U\ j (dU d'U dUd°U\,\
p J\\dy dxdy dx df )

aX+
[dx- dx~dy

"
~dy~ tf^J dy)

'

tdU d*U^ dU d*U\
\ dx dxdy dy dy' J

& '

whence,

dU d-U
dx

dU d*U _ ld [(dU\* (dU\*\
dy dxdy dx dxdy

* ""
s

\\ dx I
+

(dy I )

(d*U d*U\ (dU , dU , \

-{-dtf
+

-dtf) Kdx-
dx +

~dy-
d
y)

>
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and therefore,

5- '-*{(£)' m*M*%) (£a' + £*)-

It will be observed that
^-j-

+ -5-5- = x (U), is a first integral of (10).

Consequently this latter term, which is the value of C in (1), comes out

a function of the parameter of a line of motion as it should.

We may employ equation (10), precisely as before, to enquire whether

a proposed system of lines can, under any circumstances, be a system of

lines of motion. Let fix, y) = Ul
= C, be the equation to the system ;

then, putting as before, U =
<p ( ?/,), we get

+*fwtb,(du*
d dU> d \l(du*Y-L_ (

dU>V\
r ^Uy" Tx~ ~dx~ dy)\\dx)

+
\dj) j

+ * {U^
\-dJ dx

~
~dx~ dy-) VdlF +

~dtf)
= ° ;

or, Ptf'iUJ + Q0'(E7,) = 0, suppose.

Hence, as before, if we express y in terms of x and Ult from the

equation f(x, y)
= Ult and substitute that value in -5, the result must

not contain x. If it does, the proposed system of lines cannot be a

system of lines of motion ; if not, the integration of the above equation
will give tyiUy), under the form <£(?/,)

= AFiUi) + B, and we can

immediately get the values of u, v and p, with the same arbitrary con-

stants as in the previous case.

One case in which the motion is possible is where the lines of motion

are a system of similar ellipses or hyperbolas about the same centre,

or a system of equal parabolas having the same axis. In the case of the

ellipse, the particles in a radius vector at any time remain in a radius
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vector, and the value of p has the form pV+A + B(a?+ y
2

). When
however the ellipse becomes a circle, P and Q vanish in the equation

P<p"(Ui) + Q(t>'{U^)
— 0. Consequently the form of <p may be any

whatever. The value of J7, being a? + y
1

, we have

u = 2cj>'(U1 )y, v = -2(p'(Ul)a;;

whence, «2 + * = 4
\<f>' (U,)}* (& + f) = 4 U, {<f> (t/,)}

2
.

Hence, the velocity may be any function of the distance from the centre.

It is evident that we may conceive cylindrical shells of fluid, having a

common axis, to be revolving about that axis with any velocities what-

ever, if we do not consider friction, or whether such a mode of motion

would be stable. The result is the same if we enquire in what way
fluid can move in a system of parallel lines.

In any case where the motion in a certain system of lines is possible,

if we suppose two of these lines to be the bases of bounding cylindrical

surfaces, and if we suppose the velocity and direction of motion, at

each point of a section of the entering, and also of the issuing fluid, to

be what that case requires, I have not proved that the fluid must move

in that system of lines. When the above conditions are given there

may still perhaps be different modes of steady motion ; and of these

some may be stable, and others unstable. There may even be no stable

steady mode of motion possible, in which case the fluid would continue

perpetually eddying.

In the case of rectangular hyperbolas, the fluid appeared, on making
the experiment, to move in hyperbolas when the end at which the

fluid entered was broad and the other end narrow, but not when the

end by which the fluid entered was narrow. This may, I think, in

some measure be accounted for. Suppose fluid to flow out of a vessel

where the pressure is p t into one where it is p2 , through a small orifice.

Then, the motion being steady, we have, along the same line of motion,

^ = C — £ v*, where v is the whole velocity. At a distance from the

3E 2
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orifice, in the first vessel, the pressure will be approximately pu and the

velocity nothing. At a distance in the second vessel, the pressure will

be approximately^, and therefore the velocity = V ^' - ^
, nearly.

r

The result is the same if forces act on the fluid. Hence the velocity
must be approximately constant; and therefore, the fluid which came
from the first vessel, instead of spreading out, must keep to a canal

of its own of uniform breadth. This is found to agree with experiment.
Hence we might expect that in the case of the hyperbolas, if the end

at which the fluid entered were narrow, the entering fluid would have

a tendency to keep to a canal of its own, instead of spreading out.

In ordinary cases of steady motion, when the lines of motion are

open curves, the fluid is supplied from an expanse of fluid, and conse-

quently udx + vdy + wd% is an exact differential. Consequently, cases

of open curves for which it is not an exact differential do not ordinarily

occur. We may, however, conceive such cases to occur; for we may
suppose the velocity and direction of motion, at each point of a section

of the entering, and also of the issuing stream, to be such as any case

requires, by supposing the fluid sent in and drawn out with the

requisite velocity and in the requisite direction through an infinite

number of infinitely small tubes.

In the case of closed curves however, in whatever manner the fluid

may have been put in motion, it seems probable that, if we neglect

the friction against the sides of the vessel, the fluid will have a tendency
to settle down into some steady mode of motion. Consequently, taking

account of the friction against the sides of the vessel, it seems probable
that the motion may in some cases become approximately steady, before

the friction has caused it to cease altogether.

Motion symmetrical about an axis, the lines of motion being in planes

passing through the axis.

Before considering this case, it may be well to prove a principle

which will a little simplify our equations.
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The general equations of motion are,

1 dp y du du du

p dx dx dy dz

I dp _ v dv dv dv

P dy dx dy dz' ^

1 dp _ dw dw dw , .-
-j-

= Z — u-j Vj— w-j- ; (13).
p dz dx dy dz s

And the equation of continuity is

du dv dw .

dx dy dz
'

^ ''

Putting Wi, ts2 ,
tst3 , for the last three terms in (11), (12), (13),

respectively, we have

p— " y — f(w\dx + w,,dy + w3dz).
P

Hence the pressure consists of two parts, the first, pV, the same as

if there were no motion, the second, the part due to the velocity.

Now the velocities are given by equation (14), and by the three equa-
tions which result on eliminating p from (11), (12), and (13). These

latter equations, as well as (14), will be the same as if there were no

forces since

dX = dT dX m dZ
and

dY dZ.
dy dx '

dz dx' dz dy
'

and therefore we shall not lose generality by omitting the forces in

(11), (12) and (13), since we shall only have to add p V to the value

of p so determined.

When the motion is symmetrical about an axis, and in planes

passing through that axis, let z be measured along the axis, and r be

the perpendicular distance from the axis, and * be the velocity per-

pendicular to the axis. Then, transforming the co-ordinates to z and r,

and omitting the forces, it will be found that equations (11), (12) and

(13) are equivalent to only two separate, equations, which are
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1 dp ds ds ., „.-
p £ = - S

d-r-
W
T*> (15) '

di"
- S Wr~ W

di' W>
1 dp dw

t„dw
P

and the equation of continuity becomes

*+*t.*.T.« m
In the case where udx + vdy + wd% is an exact differential, it will

be found that the three equations

du _ dv du die dv _ die

dy dx '

dz dx' dz dy
'

are equivalent to only one equation, which is

% = % w-

In the general case we get, by eliminating p from (15) and (16),

d I ds ds\ d_
( dw_

d% \ dr dz) dr \ dr

or

ds ds ds dw d 2
s d*s

dr dz dz d% drd% dz*

dw dw dw ds d"w d!w .

dr dz dr dr dr dz dr* ''

The differential equation, between and r, to a line of motion is

dz _ w
dr s

'

Let /j. be a factor which renders sdz — wdr an exact differential,

then

d/xs d/uw _
~dr~+~dz~- 0i

ds
, dw\ du du

dw\

dz)

fas aw\ r//u du
Orf

>[Tr
+

dz)
+8

dr
+W Tz= >
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or, using (17).
du. du, s

dr d% r

whence we easily see that u. = r is one such factor.

Let then
dll= rsdz — rwdr,

1 dU 1 dU
so that * = j— , w = j— .

r d% r dr

The equation which U is to satisfy will be got by expressing s

and w in terms of U, and substituting in (19) in the general case, or

by substituting in (18), in the case where udx + vdy + wd% is an exact

differential.

In the latter case the equation which V is to satisfy is

rf^
+

dr* r dr
~° W

In the general case, the equation is what I shall write

tdUd^ dU d\ LI /d*U.d*U ldU\\ ,„.
\d» dr dr ds) {? 13? +

dr* r dr)) * h

The value of p is given by the equation

p [[( ds ds\ , ( dtv dw\ , \-
P

- -
J {(* 3?

+ w
55 )

dr +
(* dv

+ w
an)

dx
1

•

, J , „ ,N ^* I ^^ 7 ^8 j dtD jNow \ d (f + w*) = *
-j-

dr + w^r- d% + s-j-d% + w-j- dr;

and therefore

ds ds\ j ( dw
, dw\i ds ds\ , . l dw
,

dw\ ,

{
s
Tr

+ W
di)

dr +
i
S
dr^

+ W
di)

dz

= £d(s
8 + w%

) + -T- (wdr -
sd%) +

-j- {sd%
- wdr)
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whence £_- 4(, +1^ + /(*_£) !«,

Hence the quantity under the integral sign must be a function of

17. And in fact, we can easily shew by trial that

l (d*U d*U l dU\
^Vd¥ + -d^-r^J =>HC7)

is a first integral of (21). The last term of (22) is the value of the

constant in (1).

By expanding U in a series ascending according to integral powers of

«, which may be done as long as the origin is arbitrary, it will be found
that the integral of (20) may be written under the form

U = cos (yx)F(r) + sin (v*) V _,
/(0»

where v2 F (r) denotes U*- - -
-~-J

F(r), and v" F{r) denotes that the

operation -y-j -7- is repeated n times on F(r).

We may employ equations (21) or (20) just as before, to determine

whether the motion in a proposed system of lines is possible. If

F(r, ss)
= C/i = C be the equation to the system, we must have, as before,

U =
<p( Ui) ; whence we get, in the general case,

*"(TT\\(dU' d du> d
\ r 1

f
dUA\ (

dU>Yi\

and in the more restricted case where udx + vdy + wdx is an exact

differential, we get

* (C7l) H^) +
VdT)\

+ <l>{Ui) {-d^
+ ^^-r-dv) =0 -
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As before, the ratio of the coefficients of <p" (£/,) and <£'(t/i) must be a

function of U
t alone, when as, r and £7", are connected by the equation

F(r, z) — Ui. If the motion be possible, it will in general be deter-

minate, U being of the form Af(r, z) + B. If U = r however, the

form of (p
remains arbitrary. In this case the fluid may be conceived

to move in cylindrical shells parallel to the axis, the velocity being any
function of the distance from the axis.

Particular cases are, where the lines of motion are right lines directed

to a point in the axis, and where they are equal parabolas having the

axis of z for a common axi^. In these cases udx + vdy + wdz is an

exact differential.

We may employ equations (20) and (21) to determine whether the

hypothesis of parallel sections can be strictly true in any case. In this

case, the sections being perpendicular to the axis of ss, we must have

1 dU
w = -j-

= /'(*);r dr v /

dU sv^

U=
-\r*F(z) +/(»).

Substituting this value in (21), we find, by equating to zero coefficients

of different powers of r, that the most general case corresponds to

U= (a + bz + css

) r
2 + ez +f.

If udx + vdy + wdz be an exact differential, the most general case

corresponds to

U = (a + bz) r* + c + ez.

G. G. STOKES.

Pembroke College, Cambridge,

April, 1842.
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XXIV. On the Truth of the Hydrodynamical Theorem, that if udx

+vdy+wdz be a Complete Differential with respect to

x, y, z, at any one instant, it is always so. By the Rev.

J. Power, M.A., Fellow and Tutor of Trinity Hall.

[Read May 9, 1842.]

This Theorem was first announced by La Grange, who has given
a demonstration of it in the Mecanique Analytique, Tom. n. p. 307.

The late celebrated mathematician, Baron Poisson, has, however, in

the last edition of his Mechanics, expressed great doubts of its gene-

rality, and has even mentioned that examples have occurred to him

in which it is in fault. Those examples, however, he has not given,

which is much to be regretted, as the theorem is one of the greatest

importance in the theory of fluid motion, and if not generally true, it

was highly desirable for the prevention of error, that its want of gene-

rality should be placed beyond all doubt, which a single legitimate

exception would have been sufficient to effect.

The demonstration of La Grange supposes that the general values

u, v, w, the component velocities of any given particle of fluid at the

end of the time t, are developable as follows :

u = u' + u"t + u'"t" + &c.

v = v
'

+ v"t + v'"t* + &c.

w = w' + w"t + w'"f + &c.

and Poisson objects that the demonstration fails when u, v, w are not

developable in series of the above form, as may occasionally happen.

The objection is a fair and reasonable one; and it is my object in

3F2
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the present communication to shew that even in cases where u, v, w,

do not admit of developement in the supposed form, the theorem is

nevertheless true.

The general equation of the motion of fluids is

which, since

d , N du du du du
dt dt dx dy dz

d . ! c?« r/r rf» rf»

rf# «?£ d# dy d%
'

d dw dw dw dw
dt dt dx dy d%

'

becomes

dp ,„ (du du du du ) ,- + dV = {-j- + -_— u + -j- v + -j- w ) dx
p [dt dx dy dz )

[dv dv dv dv 1 ,+
\dt

+
~dx

u +
d7j

vJr
i[;

w
)
dy

{dw
dw dw dw \ ,

di
+

dx^
U+

ch,
V +

dz-
W

)
d%>

where dV
' — Xdx + Ydy + Zd%.

If we subtract the identity

, (u* + v2 + uf\ i du dv dw) ,d
\ sT

—
}

=
\
u
di

+ V
dx

+ w
dx)

dx

I du dv dw\ 7+
{
U
dy

+ V
di

+ W
dy)

dy

( du dv dw\ 7
+

{
U
dz
+V

dz
+W

dz)
d*>



Mr. POWER, ON A THEOREM IN FLUID MOTION. 457

we obtain

dp tttt , (u* + v* + w2
\ du , dv j dw 7

~f + dV-d( )--rf* + _rfy* -dz

j
(du dv\ (du dw\\

\ \dy dx) \dz dxl\

{(dv
du\ (dv dw\\ 7

U
\Tx~ dy)

+W
{T*-dy)H

j
(dw du \ (dw _ dv\) ,

\ \dx dz) \dy dz) \

du 7 dv , dw 7=
dt

dx +
di

dy + dt
d*

(du dv\ . j ,
. (du dw\ , , 7 N+

\dy
-

dx)
{vdx - ud^ + te

-
a) {wdx - ud%)

(dv dw\ , , 7 .

+
[T*-dj)

(>0d*- vd*>'

Since p is a function of p depending on the nature of the fluid,

— is a complete differential with respect to x, y, z, as well as the two
P

remaining terms on the left-hand side of the above equation; conse-

quently, putting

du dv n _ du dw _ dv dw
dy dx' dz dx ' ^ ~ dz

"
dy

'

du , dv y dw T

Tt
d* +

di
d* +

-ai
d*>

+ a (vdx — udy) + (Z(wdx — udz) + y(wdy —
vd%),

is a complete differential with respect to x, y, z.
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If, then, the preceding expression be developed in powers of t, the

coefficients of the different powers of t will severally be exact differ-

entials with respect to x, y, %*.

Let u, v', w, denote the value of u, v, w when t = 0. Since in all

cases of nature the velocities u, v', w' must be finite, it follows that the

general values u, v, w will be developable in ascending positive powers
of /, integral or otherwise, and the smaller t is taken, the more accurately
will these general values be represented by the earlier terms of the

series, and it is quite sufficient for our purpose to regard t as indefi-

nitely small.

We may therefore assume

u = u + u"P + u'"F + &c,

v = v' + v"t + «'"<* + &c,

w = w' -j- w"tK + w'"t» + &c, •

* Let L denote any exact differential with respect to x, y, z, L at the same time con-

taining t.

Suppose that, expanding L in powers of /, we have

L = £,,<" + tj + L3f + &c,

where a, /3, y, &c, proceed in ascending order from the negative to the positive infinity.

Since the right-hand side is by hypothesis a complete differential with respect to x, y, z,

whatever be the value of t, it will continue so when divided by /",

therefore £, + L s t^~
a + L3^"

a + &c.

is so for all values of t, and consequently when t = 0. Therefore Z., is an exact differential

(for since ft
— a, y - a, are all positive, the remaining terms vanish when t = 0).

Hence also Ls t^~
a + Laf~

a + &c,

and La + LB ty
~

l> + &c,

are exact differentials for all values of I, and therefore when 1 = 0.

Consequently La is so.

In the same way it may be shown that La , Lt are all exact differentials with respect
to x, y, z.

If the developement be supposed to contain a term of the form Mi™ (log, t)", it may,
if necessary, be demonstrated in a similar manner that M is an exact differential with

respect to x, y, z.
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the indices X, /u, &c, being all positive and arranged in ascending

order.

It may be observed that the indices are assumed the same in all

the three series, which is allowable. For, the series, as exhibited above,

may clearly be made to embrace any assignable case by causing to vanish

one or more of the coefficients u", v", w", u", &c. Thus, X being the

lowest index which occurs in any one of the three series, if it occurred

only in the first, we should have v" = 0, w" = ; if it occurred in the

first and third only, we should have v" = 0, and so on. The same may
be said of n, the next lowest index which occurs in any one of the

three series, and so on for the other indices. But the evanescence of any
of these coefficients will not affect the following reasoning. Hence the

legitimacy of the assumption is manifest.

If we substitute the developements of u, v, w, in the expressions of

«> ft 7» we find

a = a + « *. + a'P + &C,

/3
= p + /S"«* + &"r + &c,

7=7' + 7"^ + y'"^ + &c,

_v_. .
du' dv' „ du" dv"

&c.

wnere a = -j -*- ,

dy dx
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becomes

\tK
-'(u"dx + v"dy + w"dz) + pp- l

(u'"dx + v'" dy + w'"dz) + &c.

+ {a + a"? + a"'F + &c.} {(v'dx-u'dy) + (v"dx - u"dy)t + kc.\

+ |/3' + P"t
K + /Tr + &c.} [w'dx - u'dz + {w"dx - u"d%)t

K + &c.}

+ {y + y"? + y
mr + &c.| [iv'dy

- v'd% + (tv'dy
- v"dz)f + kc.},

and, by what has been demonstrated above, the coefficients of all the

different powers of t are exact differentials.

Suppose now, that udx + vdy + wdz is an exact differential when
t = 0, in other words

udx + v dy + w'dz

is an exact differential, we have then,

du' dv

dy dx '

du dw' _
d% dx '

dv' dw' _
dz dy

that is, a =0, /3'
= 0, y = 0.

Hence it is plain that the term involving the lowest power of t in

the above expression is

\tK

-\u"dx + v"dy + w"d%),
and consequently

u'dx + v"dy + w"dz

is an exact differential; whence,

a" = 0, 0" = 0, y" = 0.

This being the case, it follows that the term involving the next

lowest power of t is

*t»-\u"dx + v'"dy + w'"dz),
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and consequently
u'dx + v'"dij + w'"dz

is an exact differential, and the demonstration may be carried on as

far as we please.

Hence it also follows that

(u'dx + v'dy + w'dz) + (u'dx + v"dy + w"dz)t + &c. ;

that is, (udx + vdy + wdz) is an exact differential.

If then, udx + vdy + wdz be an exact differential when t = 0, it is

so when t is very small ; and since the origin of t is arbitrary, by a

repetition of the same reasoning we conclude that it is an exact differential

at the end of a second very small interval, and so on ad infinitum. Hence

we conclude that it is so for any finite value of t.

Moreover, since the origin of t is arbitrary, and t may be taken

either positively or negatively in the preceding reasoning, it follows

that if at any one instant udx + vdy + wdt is an exact differential, it

is so at all other instants, past and future.

Hence also it follows that if udx + vdy + wdz is not an exact dif-

ferential at any one instant, it never will be so during the whole

motion, for if it were so at any other instant, it would likewise be

so at the former instant.

Having thus, as I conceive, supplied the deficiency of La Grange's
demonstration ;

much as I respect the authority of Poisson, I may be

allowed to venture an opinion, that he may have formed a hasty judge-
ment on the cases before him, which he has not thought proper to

detail, and which seemed to militate against the generality of this

theorem.

I shall conclude with a few remarks in confirmation of the three

following consequences of the theorem.

(1) The expression udx + vdy -f wdz is in all cases an exact dif-

ferential when the motion commences from rest.

Vol. VII. Pabt III 3G



462 Mr. POWER, ON A THEOREM IN FLUID MOTION.

(2) It is also an exact differential when the initial motion is im-

pressed by pistons impelled with finite velocities, and acting upon the

external boundary of the fluid.

(3) It differs from an exact differential by quantities of a higher
order than the first, when the motions are extremely small quantities

of the 1st order.

In the first case udx + v'dy + w'dz = 0, which may be regarded as a

complete differential with respect to x, y, %, of an arbitrary function of t.

The general value udx + vdy + wdz is therefore a complete differential.

Or, if we please, we may make u = 0, v' = 0, w = in the preceding

argument, which does not affect the reasoning, and the conclusion that

udx + vdy + wdz is a complete differential will be valid.

In the second case, if the velocities u, v, w be communicated to

any point in the interior by pistons acting impulsively on the surface,

it follows from D'Alembert's principle, that the impulses at the surface,

in conjunction with — u, —
v,

- w, &c. in the interior, must be subject

to the conditions of equilibrium.

Consequently if p be the total reactive pressure sustained at any

point in the interior of the fluid during the communication of the

velocities u, v, w to that point, we have

-J- = — (udx + vdy + wdz),
P

consequently, udx + vdy + wdz is initially a complete differential, and

therefore always continues so.

In this reasoning the instantaneous effects of the accelerating forces

X, Y, Z, are omitted as vanishing in comparison with the finite impulses,

but they may be supposed to act after the initial motion has been

communicated, and udx + vdy + wd% will, by the general theorem, con-

tinue to be a complete differential.

Thirdly, in the case of very small motions, since

du
, dv r dw y

Tt
dx +

dt
dy +

dt
d*
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differs from — -J- + dV, by quantities which involve the products of

u, v, w, -T- , &c, it follows that if we limit our approximation to quan-

tities of the first order of these small variables,

du , dv , dw ,

-j- dx + ~rx dv + -j-dzdt dt * dt

is a complete differential with respect to x, y, z; and consequently
udx + vdy + wdz is a complete differential to the same degree of ap-

proximation.

F°r if
~dt

dx +
d~t

dy + Hi
d% = d'f(x> 9* *' *)*

performing the partial integration with respect to t, we have

udx + vdy + wdz = ft d.f(x,y, %, t)

= d . ft/(x, y, z, t),

since d and f, relate to different variables.

Trinity Hall,

May 3, 1842.
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NOTE.

La Grange, having shown that in very small motions — dx -\ dy -\ dz
dt dt dt

is approximately a complete differential, concludes briefly as follows :
" et l'on voit

d>u
,

dv
,

dw
,

.. . , , , ,

que —- dw + — dy +— dz devant etre integrable relativement a x, y, x, la quan-

tite udx + vdy + wdx devra Tgtre aussi." This remark, which the author leaves

sufficiently obscure, in the conclusion of my paper I endeavoured to put under a

clearer point of view.

But since the Paper was printed, I am indebted to my friend Mr Stokes, of

Pembroke College, for a remark which convinces me that the conclusion is invalid.

In fact, I had not thought it necessary to exhibit the arbitrary function of

x, y, x which ought to be added after the partial integration with respect to t,

conceiving it to be implied under the sign ft ,
but it it clear that as regards this

argument, it ought to be exhibited. Thus the partial integral of

du dv
,

dw
1

~dt d~t
y

' +
~dT

'^"' y' *' ^'

gives udw + vdy + wdx = ft df(x, y, x, t) + u dx + v dy + iv
Q dx,

« » «o> 2»o being functions of w, y, % without t.

And the second side of this equation being put under the form

dft (*i y, *> t) + u dx + v dy + w dz,

it does not follow that udx + vdy + wdx is a complete differential unless u dx +
v dy + w dz be so. But, in general, there does not appear to be sufficient ground
for supposing this to be the case.

Or we may reason thus, assuming the series for u, v, w, we have

udx + vdy + wdx = u'dx + vdy + w'dx + t
K

. (u"dx + v"dy + w"dx) + &c.

whence — du + — dy + -— dx — X . t
x ~'1

. (u'dx + v"dy + w"dx) + &c. ;

dt dt dt

and since the left-hand side is a complete differential in very small motions, the

right-hand side is so, and consequently u" dx + v" dy + w" dx, &c. are so: but we

cannot conclude from thence that tidx+vdy + wdz is so, unless u'dx + v'dy + w'dx

(i.e., the initial value of udx + vdy + wdx) be a complete differential.

Hence, except for the above assertion of La Grange, I see no reason to draw

any further conclusion for small motions, than has already been drawn for finite

motions, namely, that if, for any one value of t, udx + vdy + wdx be a complete

differential, it is always so.

J. POWER.
Trinity Hall, Nov. 9, 1842.

Erratum. Page 458, line 19 correct thus, 'containing t'.



ERRATA to No. XXII.

The Reader is requested to pass over the demonstration given in § 1 4, as it is erroneous.

Another demonstration of the almost self evident proposition enunciated in § 14 is given in

§ 29, page 423. : in which place, instead of the words :
—"Also by Art. 14," (7th line from

top) read the following words :
—" Also since the maximum extent of the vibrations of the

material particles must be small compared with that of the etherial, for the reasons assigned in

Article 14."

CORRECTIONS to No. XXIII.

Since the publication of the above Paper, a mistake has been pointed out to me by the

Rev. J. Power, in p. 440. The three equations at the bottom of this page are not independent,

and therefore the proposition which is the subject of the latter part of this, and of the first

paragraph of the following page, is not generally true for motion in three dimensions. In

the cases however of motion in two dimensions, and of motion symmetrical about an axis,

the three analogous equations are reduced to one, and the proposition is true. None of the

succeeding results are affected by this error, excepting that the first paragraph of p. 448 must

be restricted to the two cases above mentioned. There also occur the following errata:—

P. 440 1. 3 for C read C,.

P. 442 1. 13 for x read J~l y.

P. 445 1. 2 from bottom, insert the terms - -r—-t-j- dx- -,— -j-j- dy, on the left-hand

side of the equation.

G. G. STOKES.
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